
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Dynamic Partial Order Reduction for Checking Correctness
Against Transaction Isolation Levels

Modern applications, such as social networking systems and e-commerce platforms are centered around
using large-scale databases for storing and retrieving data. Accesses to the database are typically enclosed in
transactions that allow computations on shared data to be isolated from other concurrent computations and
resilient to failures. Modern databases trade isolation for performance. The weaker the isolation level is, the
more behaviors a database is allowed to exhibit and it is up to the developer to ensure that their application
can tolerate those behaviors.

In this work, we propose stateless model checking algorithms for studying correctness of such applications
that rely on dynamic partial order reduction. These algorithms work for a number of widely-used weak
isolation levels, including Read Committed, Causal Consistency, Snapshot Isolation, and Serializability. We
show that they are complete, sound and optimal, and run with polynomial memory consumption in all cases.
We report on an implementation of these algorithms in the context of Java Pathfinder applied to a number of
challenging applications drawn from the literature of distributed systems and databases.

1 INTRODUCTION
Data storage is no longer about writing data to a single disk with a single point of access. Modern
applications require not just data reliability, but also high-throughput concurrent accesses. Ap-
plications concerning supply chains, banking, etc. use traditional relational databases for storing
and processing data, whereas applications such as social networking software and e-commerce
platforms use cloud-based storage systems (such as Azure Cosmos DB [52], Amazon DynamoDB
[29], Facebook TAO [20], etc.).

Providing high-throughput processing, unfortunately, comes at an unavoidable cost of weakening
the consistency guarantees offered to users: Concurrently-connected clients may end up observing
different versions of the same data. These “anomalies” can be prevented by using a strong isolation

level such as Serializability [50], which essentially offers a single version of the data to all clients
at any point in time. However, serializability requires expensive synchronization and incurs a
high performance cost. As a consequence, most storage systems use weaker isolation levels, such
as Causal Consistency [9, 42, 44], Snapshot Isolation [14], Read Committed [14], etc. for better
performance. In a recent survey of database administrators [51], 86% of the participants responded
that most or all of the transactions in their databases execute at Read Committed level.
A weaker isolation level allows for more possible behaviors than stronger isolation levels. It is

up to the developers then to ensure that their application can tolerate this larger set of behaviors.
Unfortunately, weak isolation levels are hard to understand or reason about [6, 21] and resulting
application bugs can cause loss of business [60].
Model Checking Database-Backed Applications. This paper addresses the problem of model

checking code for correctness against a given isolation level. Model checking [27, 54] explores the
state space of a given program in a systematic manner and it provides high coverage of program
behavior. However, it faces the infamous state explosion problem, i.e., the number of executions
grows exponentially in the number of concurrent clients.
Partial order reduction (POR) [28, 34, 53, 58] is an approach that limits the number of explored

executions without sacrificing coverage. POR relies on an equivalence relation between executions
where e.g., two executions are equivalent if one can be obtained from the other by swapping
consecutive independent (non-conflicting) execution steps. It guarantees that at least one execution
from each equivalence class is explored. Optimal POR techniques explore exactly one execution
from each equivalence class. Beyond this classic notion of optimality, POR techniques may aim
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1:2

for optimality by avoiding visiting states from which the exploration is blocked. Dynamic partial
order reduction (DPOR) [32] has been introduced to explore the execution space (and tracking the
equivalence relation between executions) on-the-fly without relying on a-priori static analyses.
This is typically coupled with stateless model checking (SMC) [35] which explores executions of a
program without storing visited states, thereby, avoiding excessive memory consumption.

There is a large body of work on (D)POR techniques that address their soundness when checking
a certain class of specifications for a certain class of programs, as well as their completeness
and their theoretical optimality (see Section 8). Most often these works consider shared memory
concurrent programs executing under a strongly consistent memory model.
In the last few years, some works have studied DPOR in the case of shared memory programs

running under weak memory models such as TSO or Release-Acquire, e.g. [1, 4, 5, 40]. While these
algorithms are sound and complete, they have exponential space complexity when they are optimal.
More recently, Kokologiannakis et al. [39] defined a DPOR algorithm that has a polynomial space
complexity, in addition of being sound, complete and optimal. This algorithm can be applied for a
range of shared memory models.
While the works mentioned above concern shared memory programs, we are not aware of

any published work addressing the case of database transactional programs running under weak
isolation levels. In this paper, we address this case and propose new stateless model checking
algorithms relying on DPOR techniques for database-backed applications. We assume that all
the transactions in an application execute under the same isolation level, which happens quite
frequently in practice (as mentioned above, most database applications are run on the default
isolation level of the database). Our work generalizes the approach introduced by [39]. However,
this generalization to the transactional case, covering the most relevant isolation levels, is not a
straightforward adaptation of [39]. Ensuring optimality while preserving the other properties, e.g.,
completeness and polynomial memory complexity, is very challenging. In the following, we explain
the main steps and features of our work.
Formalizing Isolation Levels. Our algorithms rely on the axiomatic definitions of isolation levels
introduced by Biswas and Enea [16]. These definitions use logical constraints called axioms to
characterize the set of executions of a database (e.g., key-value store) that conform to a particular
isolation level (this can be extended to SQL queries [17]). These constraints refer to a specific set
of relations between events/transactions in an execution that describe control-flow or data-flow
dependencies: a program order po between events in the same transaction, a session order so
between transactions in the same session1, and a write-read wr (read-from) relation that associates
each read event with a transaction that writes the value returned by the read. These relations along
with the events in an execution are called a history. A history describes only the interaction with
the database, omitting application-side events (e.g., computing values written to the database).
Execution Equivalence. DPOR algorithms are parametrized by an equivalence relation on execu-
tions, most often, Mazurkiewicz equivalence [45]. In this work, we consider a weaker equivalence
relation, also known as read-from equivalence [3, 5, 25, 39–41], which considers that two execu-
tions are equivalent when their histories are precisely the same (they contain the same set of
events, and the relations po, so, and wr are the same). In general, reads-from equivalence is coarser
than Mazurkiewicz equivalence, and its equivalence classes can be exponentially-smaller than
Mazurkiewicz traces in certain cases [25].
SMC Algorithms. Our SMC algorithms enumerate executions of a given program under a given
isolation level 𝐼 . They are sound, i.e., enumerate only feasible executions (admitted by the program
under 𝐼 ), complete, i.e., they output a representative of each read-from equivalence class, and optimal,

1A session is a sequential interface to the storage system. It corresponds to what is also called a connection.
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Dynamic Partial Order Reduction for Checking Correctness Against Transaction Isolation Levels 1:3

i.e., they output exactly one complete execution from each read-from equivalence class. For isolation
levels weaker than and including Causal Consistency, they satisfy a notion of strong optimality

which says that additionally, the enumeration avoids states from which the execution is “blocked”,
i.e., it cannot be extended to a complete execution of the program. For Snapshot Isolation and
Serializability, we show that there exists no algorithm in the same class (to be discussed below) that
can ensure such a strong notion of optimality. All the algorithms that we propose are polynomial
space, as opposed to many DPOR algorithms introduced in the literature.

As a starting point, we define a generic class of SMC algorithms, called swapping based, general-
izing the approach adopted by [39, 40], which enumerate histories of program executions. These
algorithms focus on the interaction with the database assuming that the other steps in a transaction
concern local variables visible only within the scope of the enclosing session. Executions are
extended according to a generic scheduler function Next and every read event produces several
exploration branches, one for every write executed in the past that it can read from. Events in
an execution can be swapped to produce new exploration “roots” that lead to different histories.
Swapping events is required for completeness, to enumerate histories where a read 𝑟 reads from
a write 𝑤 that is scheduled by Next after 𝑟 . To ensure soundness, we restrict the definition of
swapping so that it produces a history that is feasible by construction (extending an execution which
is possibly infeasible may violate soundness). Such an algorithm is optimal w.r.t. the read-from
equivalence when it enumerates each history exactly once.
We define a concrete algorithm in this class that in particular, satisfies the stronger notion of

optimality mentioned above for every isolation level 𝐼 which is prefix-closed and causally-extensible,
e.g., Read Committed and Causal Consistency. Prefix-closure means that every prefix of a history
that satisfies 𝐼 , i.e., a subset of transactions and all their predecessors in the causal relation, i.e.,
(so ∪ wr)+, is also consistent with 𝐼 , and causal extensibility means that any pending transaction
in a history that satisfies 𝐼 can be extended with one more event to still satisfy 𝐼 , and if this is a
read event, then, it can read-from a transaction that precedes it in the causal relation. To ensure
strong optimality, this algorithm uses a carefully chosen condition for restricting the application of
event swaps, which makes the proof of completeness in particular, quite non-trivial.
We show that isolation levels such as Snapshot Isolation and Serializability are not causally-

extensible and that there exists no swapping based SMC algorithm which is sound, complete, and
strongly optimal at the same time (independent of memory consumption bounds). This impossibility
proof uses a program to show that any Next scheduler and any restriction on swaps would violate
either completeness or strong optimality. However, we define an extension of the previous algorithm
which satisfies the weaker notion of optimality, while preserving soundness, completeness, and
polynomial space complexity. This algorithm will simply enumerate executions according to a
weaker prefix-closed and causally-extensible isolation level, and filter executions according to the
stronger isolation levels Snapshot Isolation and Serializability at the end, before outputting.

We implemented these algorithms in the Java Pathfinder (JPF) model checker [59], and evaluated
them on a number of challenging database-backed applications drawn from the literature of
distributed systems and databases.

Our contributions and outline are summarized as follows:

§ 3 identifies a class of isolation levels called prefix-closed and causally-extensible that admit
efficient SMC.

§ 4 defines a generic class of swapping based SMC algorithms based on DPOR which are
parametrized by a given isolation level.

§ 5 defines a swapping based SMC algorithm which is sound, complete, strongly-optimal, and
polynomial space, for any isolation level that is prefix-closed and causally-extensible.
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1:4

𝑥 ∈ Vars 𝑎 ∈ LVars

Prog ::= Sess | Sess | | Prog
Sess ::= Trans | Trans; Sess

Trans ::= begin;Body; commit

Body ::= Instr | Instr;Body
Instr ::= InstrDB | 𝑎 := 𝑒 | if(𝜙 ( ®𝑎)){Instr}

InstrDB ::= 𝑎 := read(𝑥) | write(𝑥, 𝑎) | abort

Fig. 1. Program syntax. The set of global variables is denoted by Vars while LVars denotes the set of local

variables. We use 𝜙 to denote Boolean expressions over local variables, and 𝑒 to denote expressions over local

variables interpreted as values. We use ®· to denote vectors of elements.

§ 6 shows that there exists no swapping based algorithm for Snapshot Isolation and Serializ-
ability, which is sound, complete, and strongly-optimal at the same time, and proposes a
swapping based algorithm which satisfies “plain” optimality.

§ 7 reports on an implementation and evaluation of these algorithms.
Section 2 recalls the formalization of isolation levels of Biswas and Enea [16, 17], while Sections 8

and 9 conclude with a discussion of related work and concluding remarks. Additional formalization,
proofs, and experimental data can be found in the technical report [18].

2 TRANSACTIONAL PROGRAMS
2.1 Program Syntax
Figure 1 lists the definition of a simple programming language that we use to represent applications
running on top of a database. A program is a set of sessions running in parallel, each session being
composed of a sequence of transactions. Each transaction is delimited by begin and either commit
or abort instructions, and its body contains instructions that access the database and manipulate a
set LVars of local variables. We use symbols 𝑎, 𝑏, etc. to denote elements of LVars.
For simplicity, we abstract the database state as a valuation to a set Vars of global variables2,

ranged over using 𝑥 , 𝑦, etc. The instructions accessing the database correspond to reading the value
of a global variable and storing it into a local variable 𝑎 (𝑎 := read(𝑥)) , writing the value of a
local variable 𝑎 to a global variable 𝑥 (write(𝑥, 𝑎)), or an assignment to a local variable 𝑎 (𝑎 := 𝑒).
The set of values of global or local variables is denoted by Vals. Assignments to local variables
use expressions 𝑒 over local variables, which are interpreted as values and whose syntax is left
unspecified. Each of these instructions can be guarded by a Boolean condition 𝜙 ( ®𝑎) over a set of
local variables ®𝑎 (their syntax is not important). Our results assume bounded programs, as usual
in SMC algorithms, and therefore, we omit other constructs like while loops. SQL statements
(SELECT, JOIN, UPDATE) that manipulate relational tables can be compiled to reads or writes of
variables that represent fields or rows in a table (see for instance, [17, 55]).

2.2 Isolation Levels
We present the axiomatic framework introduced by Biswas and Enea [16] for defining isolation
levels. Isolation levels are defined as logical constraints, called axioms, over histories, which are an
abstract representation of the interaction between a program and the database in an execution.
2.2.1 Histories. Programs interact with a database by issuing transactions formed of begin, commit,
abort, read and write instructions. The effect of executing one such instruction is represented
using an event ⟨𝑒, type⟩ where 𝑒 is an identifier and type is a type. There are five types of events:
begin, commit, abort, read(𝑥) for reading the global variable 𝑥 , and write(𝑥, 𝑣) for writing value 𝑣
to 𝑥 . E denotes the set of events. For a read/write event 𝑒 , we use var (𝑒) to denote the variable 𝑥 .
2In the context of a relational database, global variables correspond to fields/rows of a table while in the context of a
key-value store, they correspond to keys.
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Dynamic Partial Order Reduction for Checking Correctness Against Transaction Isolation Levels 1:5

A transaction log ⟨𝑡, 𝐸, po𝑡 ⟩ is an identifier 𝑡 and a finite set of events 𝐸 along with a strict
total order po𝑡 on 𝐸, called program order (representing the order between instructions in the
body of a transaction). The minimal element of po𝑡 is a begin event. A transaction log without
neither a commit nor an abort event is called pending. Otherwise, it is called complete. A complete
transaction log with a commit event is called committed and aborted otherwise. If a commit or an
abort event occurs, then it is maximal in po𝑡 ; commit and abort cannot occur simultaneously in
the same transaction log. The set 𝐸 of events in a transaction log 𝑡 is denoted by events(𝑡). Note
that a transaction is aborted because it executed an abort instruction. Histories do not include
transactions aborted by the database because their effect should not be visible to other transactions
and the abort is not under the control of the program. For simplicity, wemay use the term transaction

instead of transaction log.
Isolation levels differ in the values returned by read events which are not preceded by a write on

the same variable in the same transaction. We assume in the following that every transaction in a
program is executed under the same isolation level. For every isolation level that we are aware of,
if a read of a global variable 𝑥 is preceded by a write to 𝑥 in po𝑡 , then it should return the value
written by the last write to 𝑥 before the read (w.r.t. po𝑡 ).

The set of read(𝑥) events in a transaction log 𝑡 that are not preceded by a write to 𝑥 in po𝑡 , for
some 𝑥 , is denoted by reads(𝑡). Also, if 𝑡 does not contain an abort event, the set of write(𝑥, _)
events in 𝑡 that are not followed by other writes to 𝑥 in po𝑡 , for some 𝑥 , is denoted by writes(𝑡).
If a transaction contains multiple writes to the same variable, then only the last one (w.r.t. po𝑡 )
can be visible to other transactions (w.r.t. any isolation level that we are aware of). If 𝑡 contains
an abort event, then we define writes(𝑡) to be the empty set. This is because the effect of aborted
transactions (its set of writes) should not be visible to other transactions. The extension to sets
of transaction logs is defined as usual. Also, we say that a transaction log 𝑡 writes 𝑥 , denoted by
𝑡 writes 𝑥 , when writes(𝑡) contains some write(𝑥, _) event.

A history contains a set of transaction logs (with distinct identifiers) ordered by a (partial) session
order so that represents the order between transactions in the same session. It also includes a
write-read relation (also called read-from) that defines read values by associating each read to a
transaction that wrote that value. Read events do not contain a value, and their return value is
defined as the value written by the transaction associated by the write-read relation. Let 𝑇 be a
set of transaction logs. For a write-read relation wr ⊆ writes(𝑇 ) × reads(𝑇 ) and variable 𝑥 , wr𝑥 is
the restriction of wr to reads of 𝑥 , wr𝑥 = wr ∩ (writes(𝑇 ) × {𝑒 | 𝑒 is a read(𝑥) event}). We extend
the relations wr and wr𝑥 to pairs of transactions by ⟨𝑡1, 𝑡2⟩ ∈ wr, resp., ⟨𝑡1, 𝑡2⟩ ∈ wr𝑥 , iff there
exists a write (𝑥, _) event 𝑤 in 𝑡1 and a read (𝑥) event 𝑟 in 𝑡2 s.t. ⟨𝑤, 𝑟 ⟩ ∈ wr, resp., ⟨𝑤, 𝑟 ⟩ ∈ wr𝑥 .
Analogously, wr and wr𝑥 can be extended to tuples formed of a transaction (containing a write) and
a read event. We say that the transaction log 𝑡1 is read by the transaction log 𝑡2 when ⟨𝑡1, 𝑡2⟩ ∈ wr.

Definition 2.1. A history ⟨𝑇, so,wr⟩ is a set of transaction logs𝑇 along with a strict partial session
order so, and a write-read relation wr ⊆ writes(𝑇 ) × reads(𝑇 ) such that
• the inverse of wr is a total function,
• if (𝑤, 𝑟 ) ∈ wr, then𝑤 and 𝑟 are a write and respectively, a read, of the same variable, and
• so ∪ wr is acyclic (here we use the extension of wr to pairs of transactions).

Every history includes a distinguished transaction writing the initial values of all global variables.
This transaction precedes all the other transactions in so. We use ℎ, ℎ1, ℎ2, . . . to range over histories.

The set of transaction logs𝑇 in a history ℎ = ⟨𝑇, so,wr⟩ is denoted by tr(ℎ), and events(ℎ) is the
union of events(𝑡) for 𝑡 ∈ 𝑇 . For a history ℎ and an event 𝑒 in ℎ, tr(ℎ, 𝑒) is the transaction 𝑡 in ℎ

that contains 𝑒 . Also, writes(ℎ) = ⋃
𝑡 ∈tr(ℎ) writes(𝑡) and reads(ℎ) = ⋃

𝑡 ∈tr(ℎ) reads(𝑡).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6

𝑡1 𝑡3

𝑡2

writes 𝑥

wr𝑥

(so ∪ wr)+

co

𝑡1 ≠ 𝑡2 ∧ ⟨𝑡1, 𝑡3 ⟩ ∈ wr𝑥 ∧
𝑡2 writes 𝑥 ∧
⟨𝑡2, 𝑡3 ⟩ ∈ (so ∪ wr)+
⇒ ⟨𝑡2, 𝑡1 ⟩ ∈ co

(a) Causal Consistency

𝑡1 𝑡3

𝑡2

writes 𝑥

𝑡4

wr𝑥

co
∗

(so ∪ wr)co

𝑡1 ≠ 𝑡2 ∧ ⟨𝑡1, 𝑡3 ⟩ ∈ wr𝑥 ∧
𝑡2 writes 𝑥 ∧
⟨𝑡2, 𝑡3 ⟩ ∈ co∗ ◦ (wr ∪ so)
⇒ ⟨𝑡2, 𝑡1 ⟩ ∈ co

(b) Prefix

𝑡1 𝑡3

writes 𝑦

𝑡2

writes 𝑥

𝑡4

writes 𝑦

wr𝑥

co
∗

co

co

𝑡1 ≠ 𝑡2 ∧ ⟨𝑡1, 𝑡3 ⟩ ∈ wr𝑥 ∧
𝑡2 writes 𝑎 ∧ 𝑡3 writes 𝑦 ∧
𝑡4 writes 𝑦 ∧ ⟨𝑡2, 𝑡4 ⟩ ∈ co∗
∧ ⟨𝑡4, 𝑡3 ⟩ ∈ co
⇒ ⟨𝑡2, 𝑡1 ⟩ ∈ co

(c) Conflict

𝑡1 𝑡3

𝑡2

writes 𝑥

wr𝑥

co

co

𝑡1 ≠ 𝑡2 ∧ ⟨𝑡1, 𝑡3 ⟩ ∈ wr𝑥∧
𝑡2 writes 𝑥 ∧ ⟨𝑡2, 𝑡3 ⟩ ∈ co
⇒ ⟨𝑡2, 𝑡1 ⟩ ∈ co

(d) Serializability

Fig. 2. Axioms defining isolations levels (all logical variables representing transactions, e.g., 𝑡1, are universally
quantified). The reflexive and transitive, resp., transitive, closure of a relation 𝑟𝑒𝑙 is denoted by 𝑟𝑒𝑙∗, resp.,
𝑟𝑒𝑙+. Also, ◦ denotes the composition of two relations, i.e., 𝑟𝑒𝑙1 ◦ 𝑟𝑒𝑙2 = {⟨𝑎, 𝑏⟩|∃𝑐.⟨𝑎, 𝑐⟩ ∈ 𝑟𝑒𝑙1 ∧ ⟨𝑐, 𝑏⟩ ∈ 𝑟𝑒𝑙2}.

We extend so to pairs of events by (𝑒1, 𝑒2) ∈ so if (tr(ℎ, 𝑒1), tr(ℎ, 𝑒2)) ∈ so. We also define
po =

⋃
𝑡 ∈𝑇 po𝑡 .

2.2.2 Axiomatic Framework. A history satisfies a certain isolation level if there is a strict total order
co on its transactions, called commit order, which extends the write-read relation and the session
order, and which satisfies certain properties. These properties, called axioms, relate the commit
order with the so and wr relations in a history and are defined as first-order formulas of the form:

∀𝑥, ∀𝑡1 ≠ 𝑡2, ∀𝑡3 .
⟨𝑡1, 𝑡3⟩ ∈ wr𝑥 ∧ 𝑡2 writes 𝑥 ∧ 𝜙 (𝑡2, 𝑡3) ⇒ ⟨𝑡2, 𝑡1⟩ ∈ co (1)

where 𝜙 is a property relating 𝑡2 and 𝜏 (i.e., the read or the transaction reading from 𝑡1) that varies
from one axiom to another.3 Note that an aborted transaction 𝑡 cannot take the role of 𝑡1 nor 𝑡2
in equation 1 as the set writes(𝑡) is empty. Intuitively, this axiom schema states the following: in
order for 𝜏 to read specifically 𝑡1’s write on 𝑘 , it must be the case that every 𝑡2 that also writes 𝑘 and
satisfies 𝜙 (𝑡2, 𝜏) was committed before 𝑡1. The property 𝜙 relates 𝑡2 and 𝜏 using the relations in a
history and the commit order. Figure 2 shows two axioms which correspond to their homonymous
isolation levels: Causal Consistency (CC) and Serializability (SER). The conjunction of the other two
axioms Conflict and Prefix defines Snapshot Isolation (SI). Read Atomic (RA) is a weakening of CC
where (so ∪ wr)+ is replaced with so ∪ wr. Read Committed (RC) is defined similarly. Note that SER
is stronger than SI (i.e., every history satisfying SER satisfies SI as well), SI is stronger than CC, CC
is stronger than RA, and RA is stronger than RC.

write(𝑥, 1)𝑡1
read(𝑥)
write(𝑥, 2) 𝑡2

read(𝑥)
read(𝑦) 𝑡3

read(𝑥)
write(𝑦, 1)𝑡4

wr𝑥

wr𝑥

wr𝑥

wr𝑦

Fig. 3. Causal Consistency violation. Boxes

group events from the same transaction.

For instance, the axiom defining Causal Consis-
tency [42] states that for any transaction 𝑡1 writing a vari-
able 𝑥 that is read in a transaction 𝑡3, the set of (wr∪ so)+
predecessors of 𝑡3 writing 𝑥 must precede 𝑡1 in commit
order ((wr ∪ so)+ is usually called the causal order). A
violation of this axiom can be found in Figure 3: the trans-
action 𝑡2 writing 2 to 𝑥 is a (wr ∪ so)+ predecessor of the
transaction 𝑡3 reading 1 from 𝑥 because the transaction
𝑡4, writing 1 to 𝑦, reads 𝑥 from 𝑡2 and 𝑡3 reads 𝑦 from 𝑡4.

3These formulas are interpreted on tuples ⟨ℎ, co⟩ of a history ℎ and a commit order co on the transactions in ℎ as usual.
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This implies that 𝑡2 should precede in commit order the transaction 𝑡1 writing 1 to 𝑥 , which is
inconsistent with the write-read relation (𝑡2 reads from 𝑡1).

The Serializability axiom requires that for any transaction 𝑡1 writing to a variable 𝑥 that is read
in a transaction 𝑡3, the set of co predecessors of 𝑡3 writing 𝑥 must precede 𝑡1 in commit order. This
ensures that each transaction observes the effects of all the co predecessors.

Definition 2.2. For an isolation level 𝐼 defined by a set of axioms 𝑋 , a history ℎ = ⟨𝑇, so,wr⟩
satisfies 𝐼 iff there is a strict total order co s.t. wr ∪ so ⊆ co and ⟨ℎ, co⟩ satisfies 𝑋 .

A history that satisfies an isolation level 𝐼 is called 𝐼 -consistent. For two isolation levels 𝐼1 and 𝐼2,
𝐼1 is weaker than 𝐼2 when every 𝐼1-consistent history is also 𝐼2-consistent.

2.3 Program Semantics
We define a small-step operational semantics for transactional programs, which is parametrized
by an isolation level 𝐼 . The semantics keeps a history of previously executed database accesses in
order to maintain consistency with 𝐼 .
For readability, we define a program as a partial function P : SessId ⇀ Sess that associates

session identifiers in SessIdwith concrete code as defined in Figure 1 (i.e., sequences of transactions).
Similarly, the session order so in a history is defined as a partial function so : SessId ⇀ Tlogs

∗ that
associates session identifiers with sequences of transaction logs. Two transaction logs are ordered
by so if one occurs before the other in some sequence so( 𝑗) with 𝑗 ∈ SessId.

The operational semantics is defined as a transition relation⇒𝐼 between configurations, which
are defined as tuples containing the following:

• history ℎ storing the events generated by database accesses executed in the past,
• a valuation map ®𝛾 that records local variable values in the current transaction of each
session (®𝛾 associates identifiers of sessions with valuations of local variables),
• a map ®𝐵 that stores the code of each live transaction (mapping session identifiers to code),
• sessions/transactions P that remain to be executed from the original program.

The relation⇒𝐼 is defined using a set of rules as expected. Starting a new transaction in a session
𝑗 is enabled as long as this session has no live transactions (®B( 𝑗) = 𝜖) and results in adding a
transaction log with a single begin event to the history and scheduling the body of the transaction
(adding it to ®B( 𝑗)). Local steps, i.e., checking the truth value of a Boolean condition or computation
with local variables, manipulate the local variable valuations and advance the code as expected.
Read instructions of some global variable 𝑥 can have two possible behaviors: (1) if the read follows
a write on 𝑥 in the same transaction, then it returns the value written by the last write on 𝑥 in
that transaction, and (2) otherwise, the read reads from another transaction 𝑡 ′ which is chosen
non-deterministically as long as extending the current history with the write-read dependency
associated to this choice leads to a history that still satisfies 𝐼 . Depending on the isolation level,
there may not exist a transaction 𝑡 ′ the read can read from. For other instructions, e.g., commit and
abort, the history is simply extended with the corresponding events while ending the transaction
execution in the case of abort.

An initial configuration for program P contains the program P alongwith a historyℎ = ⟨{𝑡0}, ∅, ∅⟩,
where 𝑡0 is a transaction log containing only writes that write the initial values of all variables, and
empty current transaction code (B = 𝜖). An execution of a program P under an isolation level 𝐼 is a
sequence of configurations 𝑐0𝑐1 . . . 𝑐𝑛 where 𝑐0 is an initial configuration for P, and 𝑐𝑚 ⇒𝐼 𝑐𝑚+1,
for every 0 ≤ 𝑚 < 𝑛. We say that 𝑐𝑛 is 𝐼 -reachable from 𝑐0. The history of such an execution is
the history ℎ in the last configuration 𝑐𝑛 . A configuration is called final if it contains the empty
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init

read (𝑥)
read (𝑦)

write (𝑥, 2)

read (𝑥)

wr𝑥
so ∩ wr𝑦

so

wr𝑥
so

(a) A history.

init

read (𝑥)
read (𝑦)

write (𝑥, 2)
wr𝑥

so ∩ wr𝑦

so

(b) A prefix.

init

read (𝑥)
read (𝑦) read (𝑥)

so

so ∩ wr𝑦

(c) Not a prefix.

Fig. 4. Explaining the notion of prefix of a history. init denotes the transaction log writing initial values.

Boxes group events from the same transaction.

init

read (𝑥)
read (𝑦)

write (𝑥, 2)
wr𝑥

so

so

(a) Extensible history.

init

read (𝑥)
read (𝑦)

write (𝑥, 2)
write (𝑦, 2)

wr𝑥
so ∩ wr𝑦

so

(b) Non-extensible history.

Fig. 5. Explaining causal extensibility. init denotes the transaction log

writing initial values. Boxes group events from the same transaction.

init

write (𝑧, 1)
read (𝑥)
write (𝑦, 1)

write (𝑧, 2)
read (𝑦)
write (𝑥, 2)

wr𝑥 wr𝑦

Fig. 6. A counter-example to causal

extensibility for SI and SER. The so-
edges from init to the other trans-
actions are omitted for legibility.

program (P = ∅). Let hist𝐼 (P) denote the set of all histories of an execution of P under 𝐼 that ends
in a final configuration.

3 PREFIX-CLOSED AND CAUSALLY-EXTENSIBLE ISOLATION LEVELS
We define two properties of isolation levels, prefix-closure and causal extensibility, which enable
efficient DPOR algorithms (as shown in Section 5).

3.1 Prefix Closure
For a relation 𝑅 ⊆ 𝐴 × 𝐴, the restriction of 𝑅 to 𝐴′ × 𝐴′, denoted by 𝑅 ↓ 𝐴′ × 𝐴′, is defined by
{(𝑎, 𝑏) : (𝑎, 𝑏) ∈ 𝑅, 𝑎, 𝑏 ∈ 𝐴′}. Also, a set 𝐴′ is called 𝑅-downward closed when it contains 𝑎 ∈ 𝐴
every time it contains some 𝑏 ∈ 𝐴 with (𝑎, 𝑏) ∈ 𝑅.

A prefix of a transaction log ⟨𝑡, 𝐸, po𝑡 ⟩ is a transaction log ⟨𝑡, 𝐸′, po𝑡 ↓ 𝐸′ × 𝐸′⟩ such that 𝐸′ is po𝑡 -
downward closed. A prefix of a historyℎ = ⟨𝑇, so,wr⟩ is a historyℎ′ = ⟨𝑇 ′, so ↓ 𝑇 ′ ×𝑇 ′,wr ↓ 𝑇 ′ ×𝑇 ′⟩
such that every transaction log in 𝑇 ′ is a prefix of a different transaction log in 𝑇 but carrying the
same id, events(ℎ′) ⊆ events(ℎ), and events(ℎ′) is (po∪ so∪wr)∗-downward closed. For example,
the history pictured in Fig. 4b is a prefix of the one in Fig. 4a while the history in Fig. 4c is not. The
transactions on the bottom of Fig. 4c have a wr predecessor in Fig. 4a which is not included.

Definition 3.1. An isolation level 𝐼 is called prefix-closed when every prefix of an 𝐼 -consistent
history is also 𝐼 -consistent.

Every isolation level 𝐼 discussed above is prefix-closed because if a history ℎ is 𝐼 -consistent with a
commit order co, then the restriction of co to the transactions that occur in a prefix ℎ′ of ℎ satisfies
the corresponding axiom(s) when interpreted over ℎ′.

Theorem 3.2. Read Committed, Read Atomic, Causal Consistency, Snapshot Isolation, and Serializ-

ability are prefix closed.

3.2 Causal Extensibility
We start with an example to explain causal extensibility. Let us consider the histories ℎ1 and ℎ2 in
Figures 5a and 5b, respectively, without the events read(𝑦) and write(𝑦, 2) written in blue bold font.
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init

write (𝑥, 1)
write (𝑦, 1)

𝑡1

write (𝑥, 2)
𝑡2

write (𝑥, 3)
𝑡3

read (𝑦)
· · ·

𝑡4so

so

wr𝑦

so
so

(a) History ℎ.

init

write (𝑥, 1)
write (𝑦, 1)

𝑡1

write (𝑥, 2)
𝑡2

write (𝑥, 3)
𝑡3

read (𝑦)
read (𝑥)

𝑡4so

so

wr𝑦 , wr𝑥

so
so

(b) 𝑡4 reads 𝑥 and 𝑦 from 𝑡1.

init

write (𝑥, 1)
write (𝑦, 1)

𝑡1

write (𝑥, 2)
𝑡2

write (𝑥, 3)
𝑡3

read (𝑦)
read (𝑥)

𝑡4

wr𝑦
so ∩ wr𝑥

so

so
so

(c) 𝑡4 reads 𝑥 from 𝑡3,𝑦 from 𝑡1.
Fig. 7. Two causal extensions of the history ℎ on the left with the read(𝑥) event written in blue.

These histories satisfy Read Atomic. The history ℎ1 can be extended by adding the event read (𝑦)
and the wr dependency wr(init, read (𝑦)) while still satisfying Read Atomic. On the other hand,
the history ℎ2 can not be extended with the event write (𝑦, 2) while still satisfying Read Atomic.
Intuitively, if the reading transaction on the bottom reads 𝑥 from the transaction on the right, then
it should read 𝑦 from the same transaction because this is more “recent” than init w.r.t. session
order. The essential difference between these two extensions is that the first concerns a transaction
which is maximal in (so ∪ wr)+ while the second no. The extension of ℎ2 concerns the transaction
on the right in Figure 5b which is a wr predecessor of the reading transaction. Causal extensibility
will require that at least the (so∪wr)+ maximal (pending) transactions can always be extended with
any event while still preserving consistency. The restriction to (so ∪ wr)+ maximal transactions
is intuitively related to the fact that transactions should not read from non-committed (pending)
transactions, e.g., the reading transaction in ℎ2 should not read from the still pending transaction
that writes 𝑥 and later 𝑦.
Formally, let ℎ = ⟨𝑇, so,wr⟩ be a history. A transaction 𝑡 is called (so ∪ wr)+-maximal in ℎ if ℎ

does not contain any transaction 𝑡 ′ such that (𝑡, 𝑡 ′) ∈ (so ∪ wr)+. We define a causal extension of a
pending transaction 𝑡 in ℎ with an event 𝑒 as a history ℎ′ such that:
• 𝑒 is added to 𝑡 as a maximal element of po𝑡 ,
• if 𝑒 is a read event and 𝑡 does not contain a write to var (𝑒), then wr is extended with some

tuple (𝑡 ′, 𝑒) such that (𝑡 ′, 𝑡) ∈ (so ∪wr)+ in ℎ (if 𝑒 is a read event and 𝑡 does contain a write
to var (𝑒), then the value returned by 𝑒 is the value written by the latest write on var (𝑒)
before 𝑒 in 𝑡 ; the definition of the return value in this case is unique and does not involve
wr dependencies),
• the other elements of ℎ remain unchanged in ℎ′.

For example, Figure 7b and 7c present two causal extensions with a read(𝑥) event of the transac-
tion 𝑡4 in the history ℎ in Figure 7a. The new read event reads from transaction 𝑡1 or 𝑡3 which were
already related by (so∪wr)+ to 𝑡4. An extension of ℎ where the new read event reads from 𝑡2 is not
a causal extension because (𝑡2, 𝑡4) ∉ (so ∪ wr)+.
Definition 3.3. An isolation level 𝐼 is called causally-extensible if for every 𝐼 -consistent history

ℎ, every (so ∪ wr)+-maximal pending transaction 𝑡 in ℎ, and every event 𝑒 , there exists a causal
extension ℎ′ of 𝑡 with 𝑒 that is 𝐼 -consistent.

Theorem 3.4. Causal Consistency, Read Atomic, and Read Committed are causally-extensible.

Snapshot Isolation and Serializability are not causally extensible. Figure 6 presents a counter-
example to causal extensibility: the causal extension of the history ℎ that does not contain the
write(𝑥, 2) written in blue bold font with this event does not satisfy neither Snapshot Isolation nor
Serializability although ℎ does. Note that the causal extension with a write event is unique. (Note
that both ℎ and this causal extension satisfy Causal Consistency and therefore, as expected, this
counter-example does not apply to isolation levels weaker than Causal Consistency.)
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Algorithm 1 explore algorithm
1: function explore(P, ℎ< , locals)
2: 𝑗, 𝑒, 𝛾 ← Next(P, ℎ<, locals)
3: locals

′ ← locals[𝑒 ↦→ 𝛾]
4: if 𝑒 = ⊥ and Valid(ℎ) then
5: output ℎ, locals′
6: else if type(𝑒) = read then
7: for all 𝑡 ∈ ValidWrites(ℎ, 𝑒) do
8: ℎ′< ← ℎ< ⊕𝑗 𝑒 ⊕ wr(𝑡, 𝑒)
9: explore(P, ℎ′<, locals′)
10: exploreSwaps(P, ℎ′<, locals′)
11: else
12: ℎ′< ← ℎ< ⊕𝑗 𝑒
13: explore(P, ℎ′<, locals′)
14: exploreSwaps(P, ℎ′<, locals′)

Algorithm 2 exploreSwaps
1: function exploreSwaps(P, ℎ< , locals)
2: 𝑙 ← ComputeReorderings(ℎ<)
3: for all (𝛼, 𝛽) ∈ 𝑙 do
4: if Optimality(ℎ<, 𝛼, 𝛽, locals) then
5: explore(P, Swap(ℎ<, 𝛼, 𝛽, locals))

4 SWAPPING-BASED MODEL CHECKING ALGORITHMS
We define a class of stateless model checking algorithms for enumerating executions of a given
transactional program, that we call swapping-based algorithms. Section 5 will describe a concrete
instance that applies to isolation levels that are prefix-closed and causally extensible.
These algorithms are defined by the recursive function explore listed in Algorithm 1. The

function explore receives as input a program P, an ordered history ℎ<, which is a pair (ℎ, <) of a
history and a total order < on all the events in ℎ, and a mapping locals that associates each event 𝑒
in ℎ with the valuation of local variables in the transaction of 𝑒 (tr(ℎ, 𝑒)) just before executing 𝑒 .
For an ordered history (ℎ, <) with ℎ = ⟨𝑇, so,wr⟩, we assume that < is consistent with po, so, and
wr, i.e., 𝑒1 < 𝑒2 if (tr(ℎ, 𝑒1), tr(ℎ, 𝑒2)) ∈ (so ∪wr)+ or (𝑒1, 𝑒2) ∈ po. Initially, the ordered history and
the mapping locals are empty.
The function explore starts by calling Next to obtain an event representing the next database

access in some pending transaction of P, or a begin/commit/abort event for starting or ending a
transaction. This event is associated to some session 𝑗 . For example, a typical implementation of
Nextwould choose one of the pending transactions (in some session 𝑗 ), execute all local instructions
until the next database instruction in that transaction (applying the transition rules if-true, if-
false, and local) and return the event 𝑒 corresponding to that database instruction and the current
local state 𝛾 . Next may also return ⊥ if the program finished. If Next returns ⊥, then the function
Valid can be used to filter executions that satisfy the intended isolation level before outputting the
current history and local states (the use of Valid will become relevant in Section 6).

Otherwise, the event 𝑒 is added to the ordered history ℎ< . If 𝑒 is a read event, then ValidWrites
computes a set of write events𝑤 in the current history that are valid for 𝑒 , i.e., adding the event 𝑒
along with the wr dependency (𝑤, 𝑒) leads to a history that still satisfies the intended isolation level.
Concerning notations, let ℎ be a history where so is represented as a function so : SessId ⇀ Tlogs

∗

(as in § 2.3). For event 𝑒 , ℎ ⊕𝑗 𝑒 is the history obtained from ℎ by adding 𝑒 to the last transaction
in so( 𝑗) as the last event in po (i.e., if so( 𝑗) = 𝜎 ; ⟨𝑡, 𝐸, po𝑡 ⟩, then the session order so′ of ℎ ⊕𝑗 𝑒 is
defined by so

′ (𝑘) = so(𝑘) for all 𝑘 ≠ 𝑗 and so( 𝑗) = 𝜎 ; ⟨𝑡, 𝐸 ∪ {𝑒}, po𝑡 ∪ {(𝑒′, 𝑒) : 𝑒′ ∈ 𝐸}⟩). This is
extended to ordered histories: (ℎ, <) ⊕𝑗 𝑒 is defined as (ℎ ⊕𝑗 𝑒, < · 𝑒) where < · 𝑒 means that 𝑒 is
added as the last element of <. Also, ℎ ⊕𝑗 (𝑒, begin) is a history where ⟨𝑡, {⟨𝑒, begin⟩}, ∅⟩ with 𝑡 a
fresh id is appended to so( 𝑗), and ℎ ⊕ wr(𝑡, 𝑒) is defined by adding (𝑡, 𝑒) to the write-read of ℎ.
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Once an event is added to the current history, the algorithm may explore other histories obtained
by re-ordering events in the current one. Such re-orderings are required for completeness. New
read events can only read from writes executed in the past which limits the set of explored histories
to the scheduling imposed by Next. Without re-orderings, writes scheduled later by Next cannot
be read by read events executed in the past, although this may be permitted by the isolation level.
The function exploreSwaps calls ComputeReorderings to compute pairs of sequences of

events 𝛼, 𝛽 that should be re-ordered; 𝛼 and 𝛽 are contiguous and disjoint subsequences of the
total order <, and 𝛼 should end before 𝛽 (since 𝛽 will be re-ordered before 𝛼). Typically, 𝛼 would
contain a read event 𝑟 and 𝛽 a write event𝑤 such that re-ordering the two enables 𝑟 to read from𝑤 .
Ensuring soundness and avoiding redundancy, i.e., exploring the same history multiple times, may
require restricting the application of such re-orderings. This is modeled by the Boolean condition
called Optimality. If this condition holds, the new explored histories are computed by the function
Swap. This function returns local states as well, which are necessary for continuing the exploration.
We assume that Swap(ℎ<, 𝛼, 𝛽, locals) returns pairs (ℎ′<′ , locals

′) such that
(1) ℎ′ contains at least the events in 𝛼 and 𝛽 ,
(2) ℎ′ without the events in 𝛼 is a prefix of ℎ, and
(3) if a read 𝑟 in 𝛼 reads from different writes in ℎ and ℎ′ (the wr relations of ℎ and ℎ′ associate

different transactions to 𝑟 ), then 𝑟 is the last event in its transaction (w.r.t. po).
The first condition makes the re-ordering “meaningful” while the last two conditions ensure that

the history ℎ′ is feasible by construction, i.e., it can be obtained using the operational semantics
defined in Section 2.3. Feasibility of ℎ′ is ensured by keeping prefixes of transaction logs from ℎ

and all their wr dependencies except possibly for read events in 𝛼 (second condition). In particular,
for events in 𝛽 , it implies that ℎ′ contains all their (po ∪ so ∪ wr)∗ predecessors. Also, the change
of a read-from dependency is restricted to the last read in a transaction (third condition) because
changing the value returned by a read may disable later events in the same transaction4.

A concrete implementation of explore is called:
• 𝐼 -sound if it outputs only histories in hist𝐼 (P) for every program P,
• 𝐼 -complete if it outputs every history in hist𝐼 (P) for every program P,
• optimal if it does not output the same history twice,
• strongly optimal if it is optimal and never engages in fruitless explorations, i.e., explore is
never called (recursively) on a history ℎ that does not satisfy 𝐼 , and every call to explore
results in an output or another recursive call to explore.

5 SWAPPING-BASED MODEL CHECKING FOR PREFIX-CLOSED AND
CAUSALLY-EXTENSIBLE ISOLATION LEVELS

We define a concrete implementation of explore, denoted as explore-ce, that is 𝐼 -sound, 𝐼 -
complete, and strongly optimal for any isolation level 𝐼 that is prefix-closed and causally-extensible.
The isolation level 𝐼 is a parameter of explore-ce. The space complexity of explore-ce is polyno-
mial in the size of the program. An important invariant of this implementation is that it explores
histories with at most one pending transaction and this transaction is maximal in session order. This
invariant is used to avoid fruitless explorations: since 𝐼 is assumed to be causally-extensible, there
always exists an extension of the current history with one more event that continues to satisfy
𝐼 . Moreover, this invariant is sufficient to guarantee completeness in the sense defined above of
exploring all histories of “full” program executions (that end in a final configuration).
Section 5.1 describes the implementations of Next and ValidWrites used to extend a given

execution, Section 5.2 describes the functions ComputeReorderings and Swap used to compute

4Different wr dependencies for previous reads can be explored in other steps of the algorithm.
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begin;

a = read(x);

if(a == 3){

write(𝑦,1);

}

commit

begin;

b = read(x);

c = read(y);

commit

begin;

d = read(x);

write(𝑥,3);

commit

(a) Program (2 sessions).

init

read (𝑥)
write (𝑦, 1)

𝑡1

read (𝑥)
write (𝑥, 3)

𝑡3

read (𝑥)
read (𝑦)

𝑡2
or

or

wr

or

so

wr

(b) An incomplete history.

init

read (𝑥)
write (𝑦, 1)

𝑡1

read (𝑥)
write (𝑥, 3)

𝑡3

read (𝑥)
read (𝑦)

𝑡2
or

or

wr

or

so

wr

(c) An extension.

Fig. 8. A program with two sessions (a), a history ℎ (b), and an extension of ℎ with an event returned by Next

(c). The so-edges from init to the other transactions are omitted for legibility. We use edges labeled by or to

represent the oracle order <or. Events in gray are not yet added to the history.

re-ordered executions, and Section 5.3 describes the Optimality restriction on re-ordering. We
assume that the function Valid is defined as simply Valid(ℎ) ::= 𝑡𝑟𝑢𝑒 (no filter before outputting).
Section 5.4 discusses correctness arguments .

5.1 Extending Histories According to An Oracle Order
The function Next generates events representing database accesses to extend an execution, accord-
ing to an arbitrary but fixed order between the transactions in the program called oracle order. We
assume that the oracle order, denoted by <or, is consistent with the order between transactions in
the same session of the program. The extension of <or to events is defined as expected. For example,
assuming that each session has an id, an oracle order can be defined by an order on session ids
along with the session order so: transactions from sessions with smaller ids are considered first
and the order between transactions in the same session follows so.
Next returns a new event of the transaction that is not already completed and that is minimal

according to <or. In more detail, if 𝑗, 𝑒, 𝛾 is the output of Next(P, ℎ<, locals), then either:
• the last transaction log 𝑡 of session 𝑗 (w.r.t. so) in ℎ is pending, and 𝑡 is the smallest among
pending transaction logs in ℎ w.r.t. <or

• ℎ contains no pending transaction logs and the next transaction of sessions 𝑗 is the smallest
among not yet started transactions in the program w.r.t. <or.

This implementation of Next is deterministic and it prioritizes the completion of pending
transactions. The latter is useful to maintain the invariant that any history explored by the algorithm
has at most one pending transaction. Preserving this invariant requires that the histories given as
input to Next also have at most one pending transaction. This is discussed further when explaining
the process of re-ordering events in Section 5.2.

For example, consider the program in Figure 8a, an oracle order which orders the two transactions
in the left session before the transaction in the right session, and the history ℎ in Figure 8b. Since
the local state of the pending transaction on the left stores 3 to the local variable 𝑎 (as a result
of the previous read(𝑥) event) and the Boolean condition in if holds, Next will return the event
write (𝑦, 1) when called with ℎ.

According to Algorithm 1, if the event returned by Next is not a read event, then it is simply
added to the current history as the maximal element of the order < (cf. the definition of ⊕𝑗 on
ordered histories). If it is a read event, then adding this event may result in multiple histories
depending on the chosen wr dependency. For example, in Figure 9, extending the history in Figure
9b with the read(𝑥) event could result in two different histories, pictured in Figure 9c and 9d,
depending on the write with whom this read event is associated by wr. However, under CC, the
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begin;

write(𝑥,1);

write(𝑦,1);

commit

begin;

a = read(y);

commit

begin;

b = read(x);

commit

(a) Program (2 sessions).

init

write (𝑥, 1)
write (𝑦, 1)

read (𝑦)

read (𝑥)

so

so

wr𝑦

so

(b) Current history.

init

write (𝑥, 1)
write (𝑦, 1)

read (𝑦)

read (𝑥)

so

so

wr𝑦

so

wr𝑥

(c) One extension.

init

write (𝑥, 1)
write (𝑦, 1)

read (𝑦)

read (𝑥)

so

so

wr𝑦

sowr𝑥

(d) Another extension.

Fig. 9. Extensions of a history by adding a read event. Events in gray are not yet added to the history.

begin;

a = read(x);

b = read(y);

commit

begin;

write(𝑥,2);

write(𝑦,2);

commit

(a) Program (2 sessions).

init

read (𝑥)
read (𝑦)

𝑡1

write (𝑥, 2)
write (𝑦, 2)

𝑡2

wr

(b) Current.

init

read (𝑥)
read (𝑦)

𝑡2

write (𝑥, 2)
write (𝑦, 2)

𝑡1

wr𝑥

(c) Reorder.

init

read (𝑥)
read (𝑦)

𝑡2

write (𝑥, 2)
write (𝑦, 2)

𝑡1

wr𝑥

wr𝑦

(d) Extended.

init

read (𝑥)
read (𝑦)

𝑡2

write (𝑥, 2)
write (𝑦, 2)

𝑡1

wr𝑥

wr𝑦

(e) Inconsistent.

Fig. 10. Example of inconsistency after swapping two events. All so-edges from init to the other transactions
are omitted for legibility. The history order < is represented by the top to bottom order in each figure. Events

in gray are not yet added to the history.

latter history is inconsistent. The function ValidWrites limits the choices to those that preserve
consistency with the intended isolation level 𝐼 , i.e.,

ValidWrites(ℎ, 𝑒) B {𝑡 ∈ commTrans(ℎ) | ℎ ⊕𝑗 𝑒 ⊕ wr(𝑡, 𝑒) satisfies 𝐼 }

where commTrans(ℎ) is the set of committed transactions in ℎ.

5.2 Re-Ordering Events in Histories
After extending the current history with one more event, explore may be called recursively on
other histories obtained by re-ordering events in the current one (and dropping some other events).

Re-ordering events must preserve the invariant of producing histories with at most one pending
transaction. To explain the use of this invariant in avoiding fruitless explorations, let us consider
the program in Figure 10a assuming an exploration under Read Committed. The oracle order gives
priority to the transaction on the left. Assume that the current history reached by the exploration
is the one pictured in Figure 10b (the last added event is write (𝑥, 2)). Swapping write (𝑥, 2) with
read (𝑥) would result in the history pictured in Figure 10c. To ensure that this swap produces a new
history which was not explored in the past, the wr𝑥 dependency of read (𝑥) is changed towards
the write (𝑥, 2) transaction (we detail this later). By the definition of next (and the oracle order),
this history shall be extended with read (𝑦), and this read event will be associated by wr𝑦 to the
only available write(𝑦, _) event from init. This is pictured in Figure 10d. The next exploration
step will extend the history with write(𝑦, 2) (the only extension possible) which however, results
in a history that does not satisfy Read Committed, thereby, the recursive exploration branch being
blocked. The core issue is related to the history in Figure 10d which has a pending transaction that
is not (so ∪ wr)+-maximal. Being able to extend such a transaction while maintaining consistency
is not guaranteed by Read Committed (and any other isolation level we consider). Nevertheless,
causal extensibility guarantees the existence of an extension for pending transactions that are
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begin;

a = read(x);

if(a == 0){

abort

}

write(𝑦,1)

commit

begin;

b = read(x);

commit

begin;

write(𝑦,3);

commit

begin;

write(𝑥,4);

commit

(a) Program (2 sessions).

init

read (𝑥)
abort

𝑡1

read (𝑥)
𝑡2

write (𝑦, 3)
𝑡3

write (𝑥, 4)
𝑡4

so

so

wr𝑥

wr𝑥

(b) Current.

init

read (𝑥)
abort

𝑡1

read (𝑥)
𝑡2

write (𝑦, 3)
𝑡3

write (𝑥, 4)
𝑡4 so

so

wr𝑥

wr𝑥

(c) Swap 𝑡2 and 𝑡4.

init

read (𝑥)
write (𝑦, 1)

𝑡1

read (𝑥)
𝑡2

write (𝑦, 3)
𝑡3

write (𝑥, 4)
𝑡4

so

so

wr𝑥

(d) Swap 𝑡1 and 𝑡4.

Fig. 11. Re-ordering events. All so-edges from init to other transactions are omitted for legibility. The history

order < is represented by the top to bottom order in each figure. Events in gray are deleted from the history.

(so ∪ wr)+-maximal. We enforce this requirement by restricting the explored histories to have at
most one pending transaction. This pending transaction will necessarily be (so ∪ wr)+-maximal.

To enforce histories with at most one pending transaction, the function ComputeReorderings,
which identifies events to reorder, has a non-empty return value only when the last added event is
commit (the end of a transaction)5. Therefore, in such a case, it returns pairs of some transaction
log prefix ending in a read 𝑟 and the last completed transaction log 𝑡 , such that the transaction
log containing 𝑟 and 𝑡 are not causally dependent (i.e., related by (so ∪ wr)∗) (the transaction
log prefix ending in 𝑟 and 𝑡 play the role of the subsequences 𝛼 and respectively, 𝛽 in the de-
scription of ComputeReorderings from Section 4). To simplify the notation, we will assume that
ComputeReorderings returns pairs (𝑟, 𝑡).

ComputeReorderings(ℎ<) B {(𝑟, 𝑡) ∈ E ×𝑇 | 𝑟 ∈ reads(𝑇 ) ∧ 𝑡 writes var(𝑟 ) ∧ tr(ℎ, 𝑟 ) < 𝑡

∧ (tr(ℎ, 𝑟 ), 𝑡) ∉ (so ∪ wr)∗ ∧ 𝑡 is complete and it includes the last event in <}

For example, for the program in Figure 11a and historyℎ in Figure 11b, ComputeReorderings(ℎ)
would return (𝑟1, 𝑡4) and (𝑟2, 𝑡4) where 𝑟1 and 𝑟2 are the read (𝑥) events in 𝑡1 and 𝑡2 respectively.

For a pair (𝑟, 𝑡), the function Swap produces a new history ℎ′ which contains all the events
ordered before 𝑟 (w.r.t. <), the transaction 𝑡 and all its (so ∪ wr)∗ predecessors, and the event 𝑟
reading from 𝑡 . All the other events are removed. Note that the po predecessors of 𝑟 from the same
transaction are ordered before 𝑟 by < and they will be also included in ℎ′. The history ℎ′ without
𝑟 is a prefix of the input history ℎ. By definition, the only pending transaction in ℎ′ is the one
containing the read 𝑟 . The order relation is updated by moving the transaction containing the read
𝑟 to be the last; it remains unchanged for the rest of the events.

Swap(ℎ<, 𝑟 , 𝑡, locals) B
(
(ℎ′ = (ℎ \ 𝐷) ⊕ wr(𝑡, 𝑟 ), <′), locals′

)
,where locals′ = locals ↓ events(ℎ′)

𝐷 = {𝑒 |𝑟 < 𝑒 ∧ (tr(ℎ, 𝑒), 𝑡) ∉ (so ∪ wr)∗} and <′=
(
<↓ (events(ℎ′) \ events(tr(ℎ′, 𝑟 )))

)
· tr(ℎ′, 𝑟 )

5Aborted transactions have no visible effect on the state of the database so swapping an aborted transaction cannot produce
a new meaningful history.
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begin;

write(𝑥,2);

commit

begin;

a=read(𝑥);

commit

begin;

b=read(𝑥);

commit

begin;

write(𝑥,4);

commit

(a) Program (4 sessions).

init

write (𝑥, 2)
𝑡1

read (𝑥)
𝑡2

read (𝑥)
𝑡3

write (𝑥, 2)
𝑡4

wr

(b) Before reading.

init

write (𝑥, 2)
𝑡1

read (𝑥)
𝑡2

read (𝑥)
𝑡3

write (𝑥, 4)
𝑡4

wr

wr

(c) 𝑡3 reads init.

init

write (𝑥, 2)
𝑡1

read (𝑥)
𝑡2

read (𝑥)
𝑡3

write (𝑥, 4)
𝑡4

wr

wr

(d) 𝑡3 reads 𝑡1.

init

write (𝑥, 2)
𝑡1

read (𝑥)
𝑡2

read (𝑥)
𝑡3

write (𝑥, 4)
𝑡4

wr

(e) After swap.

Fig. 12. Re-ordering events versus optimality. We assume an oracle order orders transaction from left to

right, top to bottom in the program. All transaction logs are history-ordered top to bottom according to their

position in the figure. Events in gray are not yet added to the history.

Above, ℎ \𝐷 is the prefix of ℎ obtained by deleting all the events in 𝐷 from its transaction logs; a
transaction log is removed altogether if it becomes empty. Also, ℎ′′ ⊕ wr(𝑡, 𝑟 ) denotes an update of
the wr relation of ℎ′′ where any pair (_, 𝑟 ) is replaced by (𝑡, 𝑟 ). Finally, <′′ · tr(ℎ′, 𝑟 ) is an extension
of the total order <′′ obtained by appending the events in tr(ℎ′, 𝑟 ) according to program order.

Continuing with the example of Figure 11, when swapping 𝑟1 and 𝑡4, all the events in transaction
𝑡2 belong to 𝐷 and they will be removed. This is shown in Figure 11d. Note that transaction 𝑡1
aborted in Figure 11b while it will commit in Figure 11d (because the value read from 𝑥 changed).
When swapping 𝑟2 and 𝑡4, no event but the commit in 𝑡2 will be deleted (Figure 11c).

5.3 Ensuring Optimality
Simply extending histories according to Next and making recursive calls on re-ordered histories
whenever they are 𝐼 -consistent guarantees soundness and completeness, but it does not guarantee
optimality. Intuitively, the source of redundancy is related to the fact that applying Swap on different
histories may give the same result.
As a first example, consider the program in Figure 12a with 2 transactions that only read some

variable 𝑥 and 2 transactions that only write to 𝑥 , each transaction in a different session. Assume
that explore reaches the ordered history in Figure 12b and Next is about to return the second
reading transaction. explore will be called recursively on the two histories in Figure 12c and
Figure 12d that differ in the write that this last read is reading from (the initial write or the first
write transaction). On both branches of the recursion, Next will extend the history with the last
write transaction written in blue bold font. For both histories, swapping this last write with the
first read on 𝑥 will result in the history in Figure 12e (cf. the definition of ComputeReorderings
and Swap). Thus, both branches of the recursion will continue extending the same history and
optimality is violated. The source of non-optimality is related to wr dependencies that are removed

during the Swap computation. The histories in Figure 12c and Figure 12d differ in thewr dependency
involving the last read, but this difference was discarded during the Swap computation. To avoid
this behavior, Swap is enabled only on histories where the discardedwr dependencies relate to some
“fixed” set of writes, i.e., latest6 writes w.r.t. < that guarantee consistency by causal extensibility
(see the definition of readLatest𝐼 (_, _,) below). By causal extensibility, a read 𝑟 can always read

6We use latest writes because they are uniquely defined. In principle, other ways of identifying some unique set of writes
could be used.
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begin;

a=read(𝑥);

commit

begin;

b=read(𝑦);

commit

begin;

write(𝑦,3);

commit

begin;

write(𝑥,4);

commit

(a) Program (4 sessions).

init

read (𝑥)
𝑡1

read (𝑦)
𝑡2

write (𝑦, 3)
𝑡3

write (𝑥, 4)
𝑡4

wr

wr

(b) Current history.

init

read (𝑥)
𝑡1

read (𝑦)
𝑡2

write (𝑦, 3)
𝑡3

write (𝑥, 4)
𝑡4

wr

wr

(c) Swap 𝑡2 and 𝑡3.

init

read (𝑥)
𝑡1

write (𝑥, 4)
𝑡4

wr

(d) Swap 𝑡1 and 𝑡4.

Fig. 13. Re-ordering the same read on different branches of the recursion.

from a write which already belongs to its “causal past”, i.e., predecessors in (so ∪ wr)∗ excluding
the wr dependency for 𝑟 . For every discarded wr dependency, it is required that the read reads
from the latest such write w.r.t. <. In this example, re-ordering is enabled only when the second
read (𝑥) reads from the initial write; write(𝑥, 2) does not belong to its “causal past” (when the wr
dependency of the read itself is excluded).

The restriction above is not sufficient, because the two histories for which Swap gives the same
result may not be generated during the same recursive call (for different wr choices when adding
a read). For example, consider the program in Figure 13a that has four sessions each containing
a single transaction. explore may compute the history ℎ pictured in Figure 13b. Before adding
transaction 𝑡4, explore can re-order 𝑡3 and 𝑡2 and then extend with 𝑡4 and arrive at the history ℎ1 in
Figure 13c. Also, after adding 𝑡4, it can re-order 𝑡1 and 𝑡4 and arrive at the history ℎ2 in Figure 13d.
However, swapping the same 𝑡1 and 𝑡4 in ℎ1 leads to the same history ℎ2, thereby, having two
recursive branches that end up with the same input and violate optimality. Swapping 𝑡1 and 𝑡4 in ℎ1
should not be enabled because the read(𝑦) to be removed by Swap has been swapped in the past.
Removing it makes it possible that this recursive branch explores that wr choice for read(𝑦) again.
The Optimality condition restricting re-orderings requires that the re-ordered history be 𝐼 -

consistent and that every read deleted by Swap or the re-ordered read 𝑟 (whose wr dependency is
modified) reads from a latest valid write, cf. the example in Figure 12, and it is not already swapped,
cf. the example in Figure 13 (the set 𝐷 is defined as in Swap):

Optimality(ℎ<, 𝑟 , 𝑡, locals) B the history returned by Swap(ℎ<, 𝑟 , 𝑡, locals) satisfies 𝐼
∧ ∀𝑟 ′ ∈ reads(ℎ) ∩ (𝐷 ∪ {𝑟 }) . ¬swapped(ℎ<, 𝑟 ′) ∧ readLatest𝐼 (ℎ<, 𝑟 ′, 𝑡)

A read 𝑟 reads from a causally latest valid transaction, denoted as readLatest𝐼 (ℎ<, 𝑟 ,), if reading
from any other later transaction 𝑡 ′ w.r.t. < which is in the “causal past” of tr(ℎ<, 𝑟 ) violates the
isolation level 𝐼 . Formally, assuming that 𝑡𝑟 is the transaction such that (𝑡𝑟 , 𝑟 ) ∈ wr in ℎ,

readLatest𝐼 (ℎ<, 𝑟 , 𝑡) B 𝑡𝑟 = max
<

{
𝑡 ′ writes var (𝑟 ) ∧ (𝑡 ′, tr(ℎ<, 𝑟 )) ∈ (so ∪ wr)∗ in ℎ′

∧ ℎ′ ⊕ 𝑟 ⊕ wr(𝑡 ′, 𝑟 ) |= 𝐼

}
where ℎ′ = ℎ \ {𝑒 | 𝑟 ≤ 𝑒 ∧ (tr(ℎ, 𝑒), 𝑡) ∉ (so ∪ wr)∗}.

We say that a read 𝑟 is swapped in ℎ< when (1) 𝑟 reads from a transaction 𝑡 that is a successor in
the oracle order <or (the transaction was added by Next after the read), which is now a predecessor7
in the history order <, (2) there is no transaction 𝑡 ′ that is before 𝑟 in both <or and <, and which

7The explore maintains the invariant that every read follows the transaction it reads from in the history order <.
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is a (so ∪ wr)+ successor of 𝑡 , and (3) 𝑟 is the first read in its transaction to read from 𝑡 . Formally,
assuming that 𝑡 is the transaction such that (𝑡, 𝑟 ) ∈ wr,

swapped(ℎ<, 𝑟 ) B 𝑡 < 𝑟 ∧ 𝑡 >or 𝑟 ∧ ∀𝑡 ′ ∈ ℎ. 𝑡 ′ <or tr(ℎ, 𝑟 ) ⇒ (𝑟 < 𝑡 ′ ∨ (𝑡, 𝑡 ′) ∉ (so ∪ wr)+)
∧ ∀𝑟 ′ ∈ reads(ℎ). (𝑡, 𝑟 ′) ∈ wr⇒ (𝑟 ′, 𝑟 ) ∉ po

Condition (1) states a quite straightforward fact about swaps: 𝑟 could not have been involved in a
swap if it reads from a predecessor in the oracle order which means that it was added by Next after
the transaction it reads from. Conditions (2) and (3) are used to exclude spurious classifications as
swapped reads. Concerning condition (2), suppose that in a history ℎ we swap a transaction 𝑡 with
respect a (previous) read event 𝑟 . Later on, the algorithm may add a read 𝑟 ′ reading also from 𝑡 .
Condition (2) forbids 𝑟 ′ to be declared as swapped. Indeed, taking 𝑡𝑟 (ℎ, 𝑟 ) as an instantiation of 𝑡 ′,
𝑡𝑟 (ℎ, 𝑟 ) is before 𝑟 ′ in both <𝑜𝑟 and < and it reads from the same transaction as 𝑟 ′, thereby, being a
(so ∪ wr)+ successor of the transaction read by 𝑟 ′. Condition (3) forbids that, after swapping 𝑟 and
𝑡 in ℎ, later read events from the same transaction as 𝑟 can be considered as swapped.

Showing that 𝐼 -completeness holds despite discarding re-orderings is quite challenging. Intu-
itively, it can be shown that if some Swap is not enabled in some history ℎ< for some pair (𝑟, 𝑡)
although the result would be 𝐼 -consistent (i.e., Optimality(ℎ<, 𝑟 , 𝑡, locals) does not hold because
some deleted read is swapped or does not read from a causally latest transaction), then the algorithm
explores another history ℎ′ which coincides with ℎ except for those deleted reads who are now
reading from causally latest transactions. Then, ℎ′ would satisfy Optimality(ℎ<, 𝑟 , 𝑡, locals), and
moreover applying Swap on ℎ′ for the pair (𝑟, 𝑡) would lead to the same result as applying Swap
on ℎ, thereby, ensuring completeness.

5.4 Correctness
The following theorem states the correctness of the algorithm presented in this section:

Theorem 5.1. For any prefix-closed and causally extensible isolation level 𝐼 , explore-ce is 𝐼 -sound,

𝐼 -complete, strongly optimal, and polynomial space.

𝐼 -soundness is a consequence of the ValidWrites and Optimality definitions which guarantee
that all histories given to recursive calls are 𝐼 -consistent, and of the Swap definition which ensures
to only produce feasible histories (which can be obtained using the operational semantics defined in
Section 2.3). The fact that this algorithm never engages in fruitless explorations follows easily from
causal-extensibility which ensures that any current history can be extended with any event returned
by Next. Polynomial space is also quite straightforward since the for all loops in Algorithm 1 have
a linear number of iterations: the number of iterations of the loop in explore, resp., exploreSwaps,
is bounded by the number of write, resp., read, events in the current history (which is smaller than
the size of the program; recall that we assume bounded programs with no loops as usual in SMC
algorithms). On the other hand, the proofs of 𝐼 -completeness and optimality are quite complex.
𝐼 -completeness means that for any given program P, the algorithm outputs every history ℎ in

hist𝐼 (P). The proof of 𝐼 -completeness defines a sequence of histories produced by the algorithm
starting with an empty history and ending in ℎ, for every such history ℎ. It consists of several steps:

(1) Define a canonical total order < for every unordered partial history ℎ, such that if the
algorithm reaches ℎ<′ , for some order <′, then < and <′ coincide. This canonical order is
useful in future proof steps as it allows to extend several definitions to arbitrary histories
that are not necessarily reachable, such as Optimality or swapped.

(2) Define the notion of or-respectfulness, an invariant satisfied by every (partial) ordered
history reached by the algorithm. Briefly, a history is or-respectful if it has only one pending
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transaction and for every two events 𝑒, 𝑒′ such that 𝑒 <or 𝑒
′, either 𝑒 < 𝑒′ or there is a

swapped event 𝑒′′ in between.
(3) Define a deterministic function prev which takes as input a partial history (not necessarily

reachable), such that if ℎ is reachable, then prev(ℎ) returns the history computed by the
algorithm just before ℎ (i.e., the previous history in the call stack). Prove that if a history ℎ
is or-respectful, then prev(ℎ) is also or-respectful.

(4) Deduce that if ℎ is or-respectful, then there is a finite collection of or-respectful histories
𝐻ℎ = {ℎ𝑖 }𝑛𝑖=0 such that ℎ𝑛 = ℎ, ℎ0 = ∅, and ℎ𝑖 = prev(ℎ𝑖+1) for each 𝑖 . The or-respectfulness
invariant and the causal-extensibility of the isolation level are key to being able to construct
such a collection. In particular, they are used to prove that ℎ𝑖 has at most the same number
of swapped events as ℎ𝑖+1 and in case of equality, ℎ𝑖 contain exactly one event less than
ℎ𝑖+1, which implies that the collection is indeed finite.

(5) Prove that ifℎ is or-respectful and prev(ℎ) is reachable, thenℎ is also reachable. Conclude by
induction that every history in 𝐻ℎ is reachable, as ℎ0 is the initial state and ℎ𝑖 = prev(ℎ𝑖+1).

The proof of strong optimality relies on arguments employed for 𝐼 -completeness. It can be shown
that if the algorithm would reach a (partial) history ℎ twice, then for one of the two exploration
branches, the history ℎ′ computed just before ℎ would be different from prev(ℎ), which contradicts
the definition of prev(ℎ).
In terms of time complexity, the explore-ce(𝐼 ) algorithm achieves polynomial time between

consecutive outputs for isolation levels 𝐼 where checking 𝐼 -consistency of a history is polynomial
time, e.g., RC, RA, and CC.

6 SWAPPING-BASED MODEL CHECKING FOR SNAPSHOT ISOLATION AND
SERIALIZABILITY

For explore-ce, the part of strong optimality concerning not engaging in fruitless explorations was
a direct consequence of causal extensibility (of the isolation level). However, isolation levels such
as SI and SER are not causally extensible (see Section 3.2). Therefore, the question we investigate
in this section is whether there exists another implementation of explore that can ensure strong
optimality along with 𝐼 -soundness and 𝐼 -completeness for 𝐼 being SI or SER. We answer this
question in the negative, and as a result, propose an SMC algorithm that extends explore-ce by
just filtering histories before outputting to be consistent with SI or SER.

Theorem 6.1. If 𝐼 is Snapshot Isolation or Serializability, there exists no explore algorithm that is

𝐼 -sound, 𝐼 -complete, and strongly optimal.

The proof of Theorem 6.1 defines a program with two transactions and shows that any concrete
instance of explore in Alg. 1 cannot be both 𝐼 -complete and strongly optimal.
Given this negative result, we define an implementation of explore for an isolation level 𝐼 ∈
{𝑆𝐼, 𝑆𝐸𝑅} that ensures optimality instead of strong optimality, along with soundness, completeness,
and polynomial space bound. Thus, let explore-ce(𝐼0) be an instance of explore-ce parametrized
by 𝐼0 ∈ {RC, RA, CC}. We define an implementation of explore for 𝐼 , denoted by explore-ce∗ (𝐼0, 𝐼 ),
which is exactly explore-ce(𝐼0) except that instead of Valid(ℎ) ::= 𝑡𝑟𝑢𝑒 , it uses

Valid(ℎ) B ℎ satisfies 𝐼

explore-ce∗ (𝐼0, 𝐼 ) enumerates exactly the same histories as explore-ce(𝐼0) except that it outputs
only histories consistent with 𝐼 . The following is a direct consequence of Theorem 5.1.

Corollary 6.2. For any isolation levels 𝐼0 and 𝐼 such that 𝐼0 is prefix-closed and causally extensible,

and 𝐼0 is weaker than 𝐼 , explore-ce∗ (𝐼0, 𝐼 ) is 𝐼 -sound, 𝐼 -complete, optimal, and polynomial space.
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7 EXPERIMENTAL EVALUATION
We evaluate an implementation of explore-ce and explore-ce∗ in the context of the Java Pathfinder
(JPF) [59] model checker for Java concurrent programs. As benchmark, we use bounded-size client
programs of a number of database-backed applications drawn from the literature. The experiments
were performed on an Apple M1 with 8 cores and 16 GB of RAM.

7.1 Implementation
We implemented our algorithms as an extension of the DFSearch class in JPF. For performance
reasons, we implemented an iterative version of these algorithms where roughly, inputs to recursive
calls are maintained as a collection of histories instead of relying on the call stack. For checking
consistency of a history with a given isolation level, we implemented the algorithms proposed by
Biswas and Enea [16]. We plan to make our implementation publicly available.
Our tool takes as input a Java program and isolation levels as parameters. We assume that the

program uses a fixed API for interacting with the database, similar to a key-value store interface.
This API consists of specific methods for starting/ending a transaction, and reading/writing a global
variable. The fixed API is required for being able to maintain the database state separately from the
JVM state (the state of the Java program) and update the current history in each database access.
This relies on a mechanism for “transferring” values read from the database state to the JVM state.

7.2 Benchmark
We consider a set of benchmarks inspired by real-world applications and evaluate them under
different types of client programs and isolation levels.

Shopping Cart [56] allows users to add, get and remove items from their shopping cart and modify
the quantities of the items present in the cart.

Twitter [30] allows users to follow other users, publish tweets and get their followers, tweets and
tweets published by other followers.
Courseware [47] manages the enrollment of students in courses in an institution. It allows to

open, close and delete courses, enroll students and get all enrollments. One student can only enroll
to a course if it is open and its capacity has not reached a fixed limit.

Wikipedia [30] allows users to get the content of a page (registered or not), add or remove pages
to their watching list and update pages.
TPC-C [57] models an online shopping application with five types of transactions: reading the

stock of a product, creating a new order, getting its status, paying it and delivering it.
SQL tables are modeled using a “set” global variable whose content is the set of ids (primary

keys) of the rows present in the table, and a set of global variables, one variable for each row in the
table (the name of the variable is the primary key of that row). SQL statements such as INSERT
and DELETE statements are modeled as writes on that “set” variable while SQL statements with a
WHERE clause (SELECT, JOIN, UPDATE) are compiled to a read of the table’s set variable followed
by reads or writes of variables that represent rows in the table (similarly to [17, 55]).

7.3 Experimental Results
We designed three experiments where we compare the performance of a baseline model checking
algorithm, explore-ce and explore-ce∗ for different (combinations of) isolation levels, and we
explore the scalability of explore-ce when increasing the number of sessions and transactions per
session, respectively. For each experiment we report running time, memory consumption, and the
number of end states, i.e., histories of complete executions and in the case of explore-ce∗, before
applying the Valid filter. As the number of end states for a program on a certain isolation level
increases, the running time of our algorithms naturally increases as well.
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Fig. 14. Cactus plots comparing different algorithms in terms of time, memory, and end states. For readability,

we use CC to denote explore-ce under CC, 𝐼1+ 𝐼2 stands for explore-ce∗ (𝐼1, 𝐼2), and true is the trivial isolation
level where every history is consistent. Differences between CC, CC + SI and CC + SER are very small and

their graphics overlap. Moreover, DFS(CC) denotes a standard DFS traversal of the semantics defined in

Section 2.3. These plots exclude benchmarks that timeout (30 mins): 11 12 and 20 benchmarks timeout for

⟨RC, CC⟩, ⟨true, CC⟩ and DFS(CC) respectively.

The first experiment compares the performance of our algorithms for different combinations of
isolation levels and a baseline model checking algorithm that performs no partial order reduction.
We consider as benchmark five (independent) client programs8 for each application described above
(25 in total), each program with three sessions and three transactions per session. The running
time, memory consumption, and number of end states are reported in Figure 14 as cactus plots [19].
To justify the benefits of partial order reduction, we implement a baseline model checking

algorithm DFS(CC) that performs a standard DFS traversal of the execution tree w.r.t. the formal
semantics defined in Section 2.3 for CC (for fairness, we restrict interleavings so at most one
transaction is pending at a time). This baseline algorithm may explore the same history multiple
times since it includes no partial order reduction mechanism. In terms of time, DFS(CC) behaves
poorly: it timeouts for 20 out of the 25 programs and it is less efficient even when it terminates. We
consider a timeout of 30 mins. In comparison the strongly optimal algorithm explore-ce(CC) (under
CC) finishes in 17 seconds in average. DFS(CC) is also worse in terms of memory consumption. The
memory consumption of DFS(CC) is 441MB in average, compared to 317MB for explore-ce(CC)
(JPF forces a minimum consumption of 256MB).

To argue about the benefits of strong optimality, we compare explore-ce(CC) which is strongly
optimal with “plain” optimal algorithms explore-ce∗ (𝐼0, CC) for different levels 𝐼0. As shown in
Figure 14(a), in terms of time, explore-ce(CC) is more efficient than every “plain” optimal algorithm,
and the difference in performance grows as 𝐼0 becomes weaker. In the limit, when 𝐼0 is the trivial
isolation level true where every history is consistent, explore-ce∗ (true, CC) timeouts for 12 out
of the 25 programs. The average speedup (average of individual speedups) of explore-ce(CC) w.r.t.
explore-ce∗ (RA, CC), explore-ce∗ (RC, CC) and explore-ce∗ (true, CC) is 2, 31, and 54 respectively.
In terms of memory, all algorithms consume around 300 MB in average.

For the SI and SER isolation levels that admit no strongly optimal explore algorithm, we observe
that the overhead of explore-ce∗ (CC, SI) or explore-ce∗ (CC, SER) relative to explore-ce(CC) is
negligible (the corresponding lines in Figure 14 are essentially overlapping). This is due to the fact
that the consistency checking algorithms of Biswas and Enea [16] are polynomial time when the
number of sessions is fixed, which makes them fast at least on histories with few sessions.
In our second experiment, we investigate the scalability of explore-ce when increasing the

number of sessions. For each 𝑖 ∈ [1, 5], we consider five (independent) client programs for TPC-C
8For an application that defines a number of transactions, a client program consists of a number of sessions, each session
containing a sequence of transactions defined by the application.
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Fig. 15. Evaluating the scalability of explore-ce(CC) for TPC-C and Wikipedia client programs when in-

creasing their size. These plots include benchmarks that timeout (30 mins): 6 and 10 for 4 and 5 sessions
respectively in Figure 15a, and 2 and 5 for 4 and 5 transactions per sessions respectively in Figure 15b.

and five for Wikipedia (10 in total) with 𝑖 sessions, each session containing three transactions9.
We take CC as isolation level. The plot in Figure 15a shows average running time and memory
consumption for each number 𝑖 ∈ [1, 5] of sessions. As expected, increasing the number of sessions
is a bottleneck running time wise because the number of histories/executions increases significantly
as well. However, memory consumption does not grow with the same trend, as expected from the
polynomial space complexity bound.
For our third experiment, we evaluate the scalability of explore-ce(CC) when increasing the

number of transactions per session. We consider five (independent) TPC-C client programs and
five (independent) Wikipedia client programs with 3 sessions and 𝑖 transactions per session, for
every 𝑖 ∈ [1, 5]. Figure 15b shows average running time and memory consumption for each number
𝑖 ∈ [1, 5] of transactions per session. Increasing the number of transactions per session is also a
bottleneck for the same reasons as before.

8 RELATEDWORK
Checking Correctness of Database-Backed Applications. One line of work is concerned with
the logical formalization of isolation levels [7, 14, 16, 23, 61]. Our work relies on the axiomatic
definitions of isolation levels introduced by Biswas and Enea [16], which have also investigated the
problem of checking whether a given history satisfies a certain isolation level. Our SMC algorithms
rely on these algorithms to check consistency of a history with a given isolation level.
Another line of work focuses on the problem of finding “anomalies”: behaviors that are not

possible under serializability. This is typically done via a static analysis of the application code
that builds a static dependency graph that over-approximates the data dependencies in all possible
executions of the application [15, 24, 31, 33, 37, 60]. Anomalies with respect to a given isolation
level then correspond to a particular class of cycles in this graph. Static dependency graphs turn
out to be highly imprecise in representing feasible executions, leading to false positives. Another
source of false positives is that an anomaly might not be a bug because the application may
already be designed to handle the non-serializable behavior [22, 33]. Recent work has tried to
address these issues by using more precise logical encodings of the application [21, 22], or by using
user-guided heuristics [33]. Another approach consists of modeling the application logic and the
isolation level in first-order logic and relying on SMT solvers to search for anomalies [38, 46, 49],
or defining specialized reductions to assertion checking [12, 13]. Our approach, based on SMC,
does not generate false positives because we systematically enumerate only valid executions of a
program which allows to check for user-defined assertions.

9We consider 10 client programs with 5 sessions, and remove sessions one by one to obtain client programs with a smaller
number of sessions.
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Several works have looked at the problem of reasoning about the correctness of applications
executing under weak isolation and introducing additional synchronization when necessary [11,
36, 43, 47]. These are based on static analysis or logical proof arguments. The issue of repairing
applications is orthogonal to our work.
MonkeyDB [17] is a mock storage system for testing storage-backed applications. While being

able to scale to larger code, it has the inherent incompleteness of testing. As opposed to MonkeyDB,
our algorithms enable a systematic and complete exploration of executions and can establish cor-
rectness at least in some bounded context, and they are designed to avoid redundancy, enumerating
equivalent executions multiple times. Such guarantees are beyond the scope of MonkeyDB.
Dynamic Partial Order Reduction. Abdulla et al. [2] introduced the concept of source sets which
provided the first strongly optimal DPOR algorithm for Mazurkiewicz trace equivalence. Other
works study DPOR techniques for coarser equivalence relations, e.g., [3, 8, 10, 25, 26]. In all cases,
the space complexity is exponential when strong optimality is ensured.
Other works focus on extending DPOR to weak memory models either by targeting a specific

memory model [1, 4, 5, 48] or by being parametric with respect to an axiomatically-defined memory
model [39–41]. Some of these works can deal with the coarser reads-from equivalence, e.g., [5, 39–
41]. Our algorithms build on the work of Kokologiannakis et al. [39] which for the first time,
proposes a DPOR algorithm which is both strongly optimal and polynomial space. The definitions
of database isolation levels are quite different with respect to weak memory models, which makes
these previous works not extensible in a direct manner. These definitions include a semantics for
transactions which are collections of reads and writes, and this poses new difficult challenges. For
instance, reasoning about the completeness and the (strong) optimality of existing DPOR algorithms
for shared-memory is agnostic to the scheduler (Next function) while the strong optimality of our
explore-ce algorithm relies on the scheduler keeping at most one transaction pending at a time. In
addition, unlike TruSt, explore-ce ensures that no swapped events can be swapped again and that
the history order < is an extension of so ∪ wr. This makes our completeness and optimality proofs
radically different. Moreover, even for transactional programs with one access per transaction,
where SER and SC are equivalent, TruSt under SC and explore-ce∗ (𝐼0, SER) do not coincide, for
any 𝐼0 ∈ {RC, RA, CC}. In this case, TruSt enumerates only SC-consistent histories at the cost of
solving an NP-complete problem at each step while the explore-ce∗ step cost is polynomial time at
the price of not being strongly-optimal. Furthermore, we identify isolation levels (SI and SER) for
which it is impossible to ensure both strong optimality and polynomial space bounds (at least with
a swapping-based algorithm), a type of question that has not been investigated in previous work.

9 CONCLUSIONS
We have presented efficient SMC algorithms based on DPOR for transactional programs running
under standard isolation levels. These algorithms are instances of a generic schema, called swapping-
based algorithms, which is parametrized by an isolation level. Our algorithms are sound and
complete, and have a polynomial space complexity. Additionally, we have identified a class of
isolation levels, including RC, RA, and CC, for which our algorithms are strongly optimal, and we have
shown that swapping-based algorithms cannot be strongly optimal in the case of the stronger levels
SI and SER (but just optimal). It is interesting to observe that for the isolation levels we considered,
there is an intriguing coincidence between the existence of a strongly optimal swapping-based
algorithm and the complexity for checking if a given history is consistent with that level. Indeed,
checking consistency is polynomial time for RC, RA, and CC, and NP-complete for SI and SER.
Investigating further the relationship between strong optimality and polynomial-time consistency
checks is an interesting direction for future work.
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A AXIOMATIC LEVELS: READ COMMITTED AND READ ATOMIC.

𝑡1

𝑡2

writes 𝑥

𝛼

𝛽

wr𝑥

wr

po

co

∀𝑥, ∀𝑡1, 𝑡2, ∀𝛼. 𝑡1 ≠ 𝑡2 ∧
⟨𝑡1, 𝛼 ⟩ ∈ wr𝑥 ∧ 𝑡2 writes 𝑥 ∧
⟨𝑡2, 𝛼 ⟩ ∈ wr ◦ po
⇒ ⟨𝑡2, 𝑡1 ⟩ ∈ co

(a) Read Committed

𝑡1 𝑡3

𝑡2

writes 𝑎

wr𝑥

so ∪ wr

co

∀𝑥, ∀𝑡1, 𝑡2, ∀𝑡3 . 𝑡1 ≠ 𝑡2 ∧
⟨𝑡1, 𝑡3 ⟩ ∈ wr𝑥 ∧ 𝑡2 writes 𝑥 ∧
⟨𝑡2, 𝑡3 ⟩ ∈ so ∪ wr
⇒ ⟨𝑡2, 𝑡1 ⟩ ∈ co

(b) Read Atomic

Fig. A.1. Axioms defining isolations levels. The reflexive and transitive, resp., transitive, closure of a rela-

tion 𝑟𝑒𝑙 is denoted by 𝑟𝑒𝑙∗, resp., 𝑟𝑒𝑙+. Also, ◦ denotes the composition of two relations, i.e., 𝑟𝑒𝑙1 ◦ 𝑟𝑒𝑙2 =

{⟨𝑎, 𝑏⟩|∃𝑐.⟨𝑎, 𝑐⟩ ∈ 𝑟𝑒𝑙1 ∧ ⟨𝑐, 𝑏⟩ ∈ 𝑟𝑒𝑙2}.

The axioms defined above in Figure A.1 define the homonymous isolation levels Read Atomic (also
called Repeatable Read in the literature) and Read Committed.
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B RULES OF THE OPERATIONAL SEMANTICS (SECTION 2.3).

spawn
𝑡 fresh 𝑒 fresh P( 𝑗) = begin;Body; commit; S ®B( 𝑗) = 𝜖

ℎ, ®𝛾, ®B, P⇒𝐼 ℎ ⊕𝑗 ⟨𝑡, {⟨𝑒, begin⟩}, ∅⟩, ®𝛾 [ 𝑗 ↦→ ∅], ®B[ 𝑗 ↦→ Body; commit], P[ 𝑗 ↦→ S]

if-true
𝜓 ( ®𝑥) [𝑥 ↦→ ®𝛾 ( 𝑗) (𝑥) : 𝑥 ∈ ®𝑥] true ®B( 𝑗) = if(𝜓 ( ®𝑥)){Instr};B

ℎ, ®𝛾, ®B, P⇒𝐼 ℎ, ®𝛾, ®B[ 𝑗 ↦→ Instr;B], P

if-false
𝜓 ( ®𝑥) [𝑥 ↦→ ®𝛾 ( 𝑗) (𝑥) : 𝑥 ∈ ®𝑥] false ®B( 𝑗) = if(𝜓 ( ®𝑥)){Instr};B

ℎ, ®𝛾, ®B, P⇒𝐼 ℎ, ®𝛾, ®B[ 𝑗 ↦→ B], P

local
𝑣 = ®𝛾 ( 𝑗) (𝑒) ®B( 𝑗) = 𝑎 := 𝑒;B

ℎ, ®𝛾, ®B, P⇒𝐼 ℎ, ®𝛾 [( 𝑗, 𝑎) ↦→ 𝑣], ®B[ 𝑗 ↦→ B], P

write
𝑣 = ®𝛾 ( 𝑗) (𝑥) 𝑒 fresh ®B( 𝑗) = write(𝑥, 𝑎);B ℎ ⊕𝑗 ⟨𝑒,write(𝑥, 𝑣)⟩ satisfies 𝐼

ℎ, ®𝛾, ®B, P⇒𝐼 ℎ ⊕𝑗 ⟨𝑒,write(𝑥, 𝑣)⟩, ®𝛾, ®B[ 𝑗 ↦→ B], P

read-local
writes(last (ℎ, 𝑗)) contains a write (𝑥, 𝑣) event 𝑒 fresh ®B( 𝑗) = 𝑎 := read(𝑥);B

ℎ, ®𝛾, ®B, P⇒𝐼 ℎ ⊕𝑗 ⟨𝑒, read(𝑥)⟩, ®𝛾 [( 𝑗, 𝑎) ↦→ 𝑣], ®B[ 𝑗 ↦→ B], P

read-extern
writes(last (ℎ, 𝑗)) does not contain a write (𝑥, 𝑣) event 𝑒 fresh ®B( 𝑗) = 𝑎 := read(𝑥);B

ℎ = (𝑇, so,wr) 𝑡 = last (ℎ, 𝑗) write (𝑥, 𝑣) ∈ writes(𝑡 ′) with 𝑡 ′ ∈ commTrans(ℎ) and 𝑡 ≠ 𝑡 ′

ℎ′ = (ℎ ⊕𝑗 ⟨𝑒, read(𝑥)⟩) ⊕ wr(𝑡 ′, 𝑒) ℎ′ satisfies 𝐼

ℎ, ®𝛾, ®B, P⇒𝐼 ℎ
′, ®𝛾 [( 𝑗, 𝑎) ↦→ 𝑣], ®B[ 𝑗 ↦→ B], P

commit
𝑒 fresh ®B( 𝑗) = commit

ℎ, ®𝛾, ®B, P⇒𝐼 ℎ ⊕𝑗 ⟨𝑒, commit⟩, ®𝛾, ®B[ 𝑗 ↦→ 𝜖], P

abort
𝑒 fresh ®B( 𝑗) = abort;𝐵

ℎ, ®𝛾, ®B, P⇒𝐼 ℎ ⊕𝑗 ⟨𝑒, abort⟩, ®𝛾, ®B[ 𝑗 ↦→ 𝜖], P

Fig. B.1. An operational semantics for transactional programs. Above, last (ℎ, 𝑗) denotes the last transaction
log in the session order so( 𝑗) of ℎ, and commTrans(ℎ) denotes the set of transaction logs in ℎ that are

committed

.

Figure B.1 uses the following notation. Let ℎ be a history that contains a representation of so as
above. We use ℎ ⊕𝑗 ⟨𝑡, 𝐸, po𝑡 ⟩ to denote a history where ⟨𝑡, 𝐸, po𝑡 ⟩ is appended to so( 𝑗). Also, for an
event 𝑒 , ℎ ⊕𝑗 𝑒 is the history obtained from ℎ by adding 𝑒 to the last transaction log in so( 𝑗) and as a
last event in the program order of this log (i.e., if so( 𝑗) = 𝜎 ; ⟨𝑡, 𝐸, po𝑡 ⟩, then the session order so′ of
ℎ ⊕𝑗 𝑒 is defined by so

′ (𝑘) = so(𝑘) for all 𝑘 ≠ 𝑗 and so( 𝑗) = 𝜎 ; ⟨𝑡, 𝐸 ∪ {𝑒}, po𝑡 ∪ {(𝑒′, 𝑒) : 𝑒′ ∈ 𝐸}⟩).
Finally, for a history ℎ = ⟨𝑇, so,wr⟩, ℎ ⊕ wr(𝑡, 𝑒) is the history obtained from ℎ by adding (𝑡, 𝑒) to
the write-read relation.

spawn starts a new transaction in a session 𝑗 provided that this session has no live transaction
(®B( 𝑗) = 𝜖). It adds a transaction log with a single begin event to the history and schedules the body

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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Dynamic Partial Order Reduction for Checking Correctness Against Transaction Isolation Levels 1:29

of the transaction. if-true and if-false check the truth value of a Boolean condition of an if
conditional. local models the execution of an assignment to a local variable which does not impact
the stored history. read-local and read-extern concern read instructions. read-local handles
the case where the read follows a write on the variable 𝑥 in the same transaction: the read returns
the value written by the last write on 𝑥 in that transaction. Otherwise, read-extern corresponds to
reading a value written in another transaction 𝑡 ′. The transaction 𝑡 ′ is chosen non-deterministically
as long as extending the current history with the write-read dependency associated to this choice
leads to a history that still satisfies 𝐼 . read-extern applies only when the executing transaction
contains no write on the same variable. commit confirms the end of a transaction making its writes
visible while abort ends the transaction’s execution immediately.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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C PROOF OF THEOREM 3.4
Theorem 3.4. Causal Consistency, Read Atomic, and Read Committed are causally-extensible.

Proof. Let 𝐼 be an isolation level in {CC, RA, RC}. We show that any commit order co justifying
that a history ℎ is 𝐼 -consistent can also be used to justify that a causal extension ℎ′ of a (so ∪ wr)∗-
maximal pending transaction 𝑡 in ℎ with an event 𝑒 is 𝐼 -consistent as well. We consider a causal
extension ℎ′ where if 𝑒 is a read event, then it reads from the last transaction 𝑡𝑤 in co such that
𝑡𝑤 writes var (𝑒) and (𝑡𝑤, 𝑡) ∈ (so ∪ wr)+. Assume by contradiction that this is not the case. Let
𝜙CC (ℎ′, 𝑡 ′, 𝑒′) = 𝑡 ′ (so ∪ wr)+ tr(ℎ′, 𝑒′), 𝜙RA (ℎ′, 𝑡 ′, 𝑒′) = 𝑡 ′ (so ∪ wr) tr(ℎ′, 𝑒′) and 𝜙RC (ℎ′, 𝑡 ′, 𝑒′) =
𝑡 ′ (wr ◦ po) 𝑒′ be sub-formulas of the axioms defining the corresponding isolation level. Then,
ℎ′ contains transactions 𝑡1, 𝑡2, 𝑡3 such that 𝑡2 writes some variable 𝑥 , 𝑡3 contains some read event
𝑒′, (𝑡1, 𝑒′) ∈ wr𝑥 and 𝜙𝐼 (ℎ′, 𝑡2, 𝑒′) but (𝑡1, 𝑡2) ∈ co. The assumption concerning co implies that the
extended transaction 𝑡 is one of 𝑡1, 𝑡2, 𝑡3 (otherwise, co would not be a “valid” commit order for ℎ).
Since 𝑡 is (so ∪ wr)+-maximal in ℎ, we have that 𝑡 ∉ {𝑡1, 𝑡2}. If 𝑒 is not a read event, or if 𝑒 is a read
event different from 𝑒′, then 𝑡 ≠ 𝑡3, as 𝑡1, 𝑡2 and 𝑡3 would satisfy the same constraints in ℎ, which is
impossible by the hypothesis. Otherwise, if 𝑒 = 𝑒′, then this contradicts the choice we made for the
transaction 𝑡𝑤 that 𝑒 reads from. Since (𝑡1, 𝑡2) ∈ co and 𝑡2 writes var (𝑒), it means that 𝑡𝑤 = 𝑡1 is
not maximal w.r.t. co among transactions that write var (𝑒) and precede 𝑡 in (so ∪wr)+. Both cases
lead to a contradiction, which implies that ℎ′ is 𝐼 -consistent, and therefore the theorem holds. □
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D PROOF OF THEOREM 6.1

begin;

a = read(𝑥);

write(𝑧,1);

write(𝑦,1);

. . .

commit

begin;

b = read(𝑦);

write(𝑧,2);

write(𝑥,2);

. . .

commit

(a) Program (2 sessions).

init

read (𝑥)
write (𝑧, 1)
write (𝑦, 1)
. . .

read (𝑦)
write (𝑧, 2)
write (𝑥, 2)
. . .

wr𝑥 wr𝑦

(b) History ℎ.

init

read (𝑥)
write (𝑧, 1)
write (𝑦, 1)
. . .

read (𝑦)
write (𝑧, 2)
write (𝑥, 2)
. . .

wr𝑥

init

read (𝑥)
write (𝑧, 1)
write (𝑦, 1)
. . .

read (𝑦)
write (𝑧, 2)
write (𝑥, 2)
. . .

wr𝑦

(c) Two histories. The top

history is called ℎ1.

init

read (𝑥)
write (𝑧, 1)
write (𝑦, 1)
. . .

read (𝑦)
write (𝑧, 2)
write (𝑥, 2)
. . .

wr𝑥

(d) History ℎ2.

init

read (𝑥)
write (𝑧, 1)
write (𝑦, 1)
. . .

read (𝑦)
write (𝑧, 2)
write (𝑥, 2)
. . .

wr𝑥

(e) History ℎ3.

init

read (𝑥)
write (𝑧, 1)
write (𝑦, 1)
. . .

read (𝑦)
write (𝑧, 2)
write (𝑥, 2)
. . .

wr𝑥 wr𝑦

(f) History ℎ11.

init

read (𝑥)
write (𝑧, 1)
write (𝑦, 1)
. . .

read (𝑦)
write (𝑧, 2)
write (𝑥, 2)
. . .

wr𝑥 wr𝑦

(g) History ℎ21.

init

read (𝑥)
write (𝑧, 1)
write (𝑦, 1)
. . .

read (𝑦)
write (𝑧, 2)
write (𝑥, 2)
. . .

wr𝑥 wr𝑦

(h) History ℎ31.

init

read (𝑥)
write (𝑧, 1)
write (𝑦, 1)
. . .

read (𝑦)
write (𝑧, 2)
write (𝑥, 2)
. . .

wr𝑥

wr𝑦

(i) History ℎ32.

Fig. D.1. A program and some partial histories. Events in grey are not yet added to the history. For ℎ3, ℎ31
and ℎ32, the number of events that follow write(𝑦, 1) and write(𝑥, 2) is not important (we use black . . . to

signify that).

Theorem 6.1. If 𝐼 is Snapshot Isolation or Serializability, there exists no explore algorithm that is

𝐼 -sound, 𝐼 -complete, and strongly optimal.

Proof. We consider the program in Figure D.1a, and show that any concrete instance of the
explore function in Algorithm 1 can not be both 𝐼 -complete and strongly optimal. This program
contains two transactions, where only the first three instructions in each transaction are important.
We show that if explore is 𝐼 -complete, then it will necessarily be called recursively on a history
ℎ like in Figure D.1b which does not satisfy 𝐼 , thereby violating strong optimality. In the history
ℎ, both Snapshot Isolation and Serializability forbid the two reads reading initial values while the
writes following them are also executed (committed).

Assuming that the function Next is not itself blocking (which would violate strong optimality),
the explore will be called recursively on exactly one of the two histories in Figure D.1c, depending

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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on which of the two reads is returned first by Next. We will continue our discussion with the
history ℎ1 on the top of Figure D.1c. The other case is similar (symmetric).
From ℎ1, depending on the order defined by Next between read(𝑦) and write(𝑦, 1), explore

can be called recursively either on ℎ1, on ℎ2 in Figure D.1d, or on ℎ3 in Figure D.1e before adding
read(𝑦). From ℎ1 and ℎ2, explore explores ℎ11 in Figure D.1f and ℎ21 in Figure D.1g respectively;
while from ℎ3 two alternative histories may be explored: ℎ31 and ℎ32 in Figure D.1h and Figure D.1i
respectively.

However, from histories ℎ11, ℎ21 or ℎ31 explore will necessarily be called recursively on a history
ℎ like in Figure D.1b which does not satisfy 𝐼 , thereby violating strong optimality. Thus, any explore
implementation that is strong optimal should only explore ℎ32. In such case, by the restrictions
on the Swap function (defined in Section 4), any extension of ℎ32 does not allow to explore the
history where read(𝑥) reads fromwrite(𝑥, 2): any outcome of a re-ordering between two contiguous
subsequences 𝛼 and 𝛽 must be prefix of ℎ𝑒 when the events in 𝛼 are taken out. In particular, for
any extension ℎ′ of ℎ32 and pair of contiguous sequences 𝛼, 𝛽 such that ℎ′ \ 𝛼 is a prefix of ℎ′, if an
event from the second transaction belongs to 𝛽 , read(𝑦) must also be in 𝛽 . Therefore, write(𝑥, 2)
must also be in 𝛽 , and so read(𝑥) must be. Analogously, if read(𝑥) belongs to 𝛽 , init belongs to it.
Altogether, if 𝛽 contains any element, then 𝛼 must be empty; so no swaps can be produced from
ℎ32. To conclude, in this case explore violates 𝐼 -completeness.

□
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E PROOF OF THEOREM 5.1
Theorem 5.1. For any prefix-closed and causally extensible isolation level 𝐼 , explore-ce is 𝐼 -sound,

𝐼 -complete, strongly optimal, and polynomial space.

As explained in Section 5.4, 𝐼 -soundness, the polynomial space bound, and the part of strong
completeness that refers to not engaging in fruitless explorations follow directly from definitions.
In the following, we focus on 𝐼 -completeness and then optimality. For the sake of the proof’s
readability, we will omit all local states of the algorithm’s definition during the proof. Therefore,
we consider programs where we can describe all their events.

E.1 Completeness
By definition, explore-ce is 𝐼 -complete if for any given program P, it outputs every history in
hist𝐼 (P). Let ℎ ∈ hist𝐼 (P). Our objective is to produce a computable path of ordered histories that
lead to ℎ (i.e. a (finite) ordered collection of ordered histories such that ℎ0 = ∅ and for every 𝑛, if
𝑒 = next(ℎ𝑛), either ℎ𝑛+1 = ℎ𝑛 ⊕ 𝑒 , ℎ𝑛+1 = ℎ𝑛 ⊕ wr(𝑒, 𝑡) for some 𝑡 ∈ ℎ𝑛 or ℎ𝑛+1 = swap(ℎ𝑛, 𝑟 , 𝑡)
for some 𝑟, 𝑡 ∈ ℎ𝑛).
However, the algorithm explore-ce works with ordered histories. Therefore, we first have to

furnish ℎ with a total order called canonical order that, if ℎ were reachable, it would coincide with
its history order. Secondly, we describe a function prev defined over the set of all partial histories
that, if ℎ is reachable, prev(ℎ) returns the previous history of ℎ computed by explore-ce. Then,
we prove that there exists a finite collection of histories 𝐻 = {ℎ𝑖 }𝑛𝑖=0 such that ℎ𝑛 = ℎ, ℎ0 = ∅ and
ℎ𝑖 = prev(ℎ𝑖+1). As it ends in the initial state, we can therefore prove that this collection conforms
an actual computable path; which allow us to conclude that ℎ is reachable. Nevertheless, for proving
both the equivalence between history order and canonical order and the soundness of function
prev we will define the notion of or-respectfulness, an invariant satisfied by every reachable history
based on the events’ relative positions in the oracle order.

E.1.1 Canonical order.

Asmentioned, we need to formally define a total order for every history that coincide on reachable
histories with the history order. For achieving it, we analyze how the algorithm orders transaction
logs in a history. In particular, we observe that if two transactions 𝑡, 𝑡 ′ have a (so∪wr)∗ dependency,
the history order in the algorithm orders them analogously. But if they are (so∪wr)∗-incomparable,
the algorithm prioritizes the one that is read by a smaller read event according or. Combining both
arguments recursively we obtain a canonical order for a history, which is formally defined with the
function presented below.
The function canonicalOrder produces a relation between transactions in a history, denoted
≤ℎ . In algorithm 3’s description, we denote ⊥ to represent the end of the program, which always
exists, and that is so-related with every single transaction.

Firstly, we prove our canonical order is well defined for every pair of transactions.

LemmaE.1. For every historyℎ, event 𝑒 and transaction 𝑡 ,dep(ℎ, 𝑡,min<or
dep(ℎ, 𝑡, 𝑒)) ⊆ dep(ℎ, 𝑡, 𝑒).

Moreover, if dep(ℎ, 𝑡, 𝑒) ≠ 𝑡 , the inclusion is strict.

Proof. Let 𝑟 ′ = min<or
dep(ℎ, 𝑡, 𝑒). If dep(ℎ, 𝑡, 𝑟 ′) = 𝑡 the lemma is trivially proved, so let’s

suppose there exists 𝑟 ∈ dep(ℎ, 𝑡, 𝑟 ′) \ 𝑡 . Then, ∃𝑡 ′ s.t. 𝑡 [so ∪ wr]∗ 𝑡 ′ ∧ 𝑡 ′ [wr] 𝑟 ∧ tr(ℎ, 𝑟 ) [so ∪
wr]+tr(ℎ, 𝑟 ′) and ∃𝑡 ′′ s.t. 𝑡 [so∪wr]∗ 𝑡 ′′ ∧ 𝑡 ′′ [wr] 𝑟 ′ ∧ tr(ℎ, 𝑟 ′) [so∪wr]+tr(ℎ, 𝑒); so tr(ℎ, 𝑟 ) [so∪
wr]+tr(ℎ, 𝑟 ′) [so ∪ wr]+tr(ℎ, 𝑒). In other words, 𝑟 ∈ dep(ℎ, 𝑡, 𝑒). The moreover comes trivially as
𝑟 ′ ∉ dep(ℎ, 𝑡, 𝑟 ′). □
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Algorithm 3 Canonical order

1: procedure canonicalOrder(ℎ, 𝑡, 𝑡 ′)
2: return 𝑡 [so ∪ wr]∗ 𝑡 ′∨
3: (¬(𝑡 ′ [so ∪ wr]∗ 𝑡) ∧ minimalDependency(ℎ, 𝑡, 𝑡 ′,⊥)
4: procedure minimalDependency(ℎ, 𝑡, 𝑡 ′, 𝑒)
5: let 𝑎 = min<or

dep(ℎ, 𝑡, 𝑒); 𝑎′ = min<or
dep(ℎ, 𝑡 ′, 𝑒)

6: if 𝑎 ≠ 𝑎′ then
7: return 𝑎 <or 𝑎

′

8: else
9: return minimalDependency(ℎ, 𝑡, 𝑡 ′, 𝑎)
10: procedure dep(ℎ, 𝑡, 𝑒)
11: return {𝑟 |∃𝑡 ′ s.t. 𝑡 [so ∪ wr]∗ 𝑡 ′ ∧ 𝑡 ′ [wr] 𝑟 ∧ tr(ℎ, 𝑟 ) [so ∪ wr]+tr(ℎ, 𝑒)} ∪ 𝑡

Lemma E.2. For every pair of distinct transactions 𝑡, 𝑡 ′, minimalDependency(ℎ, 𝑡, 𝑡 ′,⊥) always
halts.

Proof. Let’s suppose by contrapositive that minimalDependency(ℎ, 𝑡, 𝑡 ′,⊥) does not halt.
Therefore, there would exist an infinite chain of events 𝑒𝑛, 𝑛 ∈ N such that 𝑒0 = ⊥, 𝑒𝑛+1 =

minor dep(ℎ, 𝑡, 𝑒𝑛) = minor dep(ℎ, 𝑡 ′, 𝑒𝑛). Firstly, asℎ is finite, so are both dep(ℎ, 𝑡, 𝑒𝑛) and dep(ℎ, 𝑡 ′, 𝑒𝑛).
Moreover, if 𝑒𝑛 ∉ 𝑡 , dep(ℎ, 𝑡, 𝑒𝑛+1) ⊊ dep(ℎ, 𝑡, 𝑒𝑛) (and analogously for 𝑡 ′). Therefore, there exist
some indexes 𝑛0,𝑚0 such that 𝑒𝑛0 ∈ 𝑡 and 𝑒𝑚0 ∈ 𝑡 ′. Let 𝑘 = max{𝑛0,𝑚0}. Because ; but if 𝑒𝑛 ∈ 𝑡 ,
𝑡 = dep(ℎ, 𝑡, 𝑒𝑛) and 𝑒𝑛+1 = 𝑒𝑛 , so 𝑒𝑘 = 𝑒𝑛0 and 𝑒𝑘 = 𝑒𝑚0 . Therefore 𝑒𝑘 ∈ 𝑡∩𝑡 ′; so 𝑡 = 𝑡 ′ as transaction
logs do not share events; which contradict the assumptions. □

Corollary E.3. The relation ≤ℎ is well defined for every pair of transactions.

Proof. As by lemma E.2, we know that minimalDependency(ℎ, 𝑡, 𝑡 ′,⊥) always halts if 𝑡 ≠ 𝑡 ′;
it is clear that canonicalOrder(ℎ, 𝑡, 𝑡 ′) also does it. Therefore, the relation is well defined. □

Now that ≤ℎ has been proved a well defined relation between each pair of transactions, let us
prove that it is indeed a total order.

Lemma E.4. The relation ≤ℎ is a total order.

Proof.
• Strongly connection Let 𝑡1, 𝑡2 s.t. 𝑡1 ≰ℎ 𝑡2. If 𝑡2 [so ∪ wr]∗𝑡1, then 𝑡2 ≤ℎ 𝑡1. Otherwise, as
¬(𝑡1 [so ∪ wr]∗ 𝑡2) and minimalDependency halts (lemma E.2) either
minimalDependency(ℎ, 𝑡1, 𝑡2,⊥) or minimalDependency(ℎ, 𝑡2, 𝑡1,⊥) holds. But as 𝑡1 ≰ℎ 𝑡2,
𝑡2 ≤ℎ 𝑡1.
• Reflexivity: By definition, for every 𝑡 , 𝑡 ≤ℎ 𝑡 .
• Transitivity: Let 𝑡1, 𝑡2, 𝑡3 three distinct transactions such that 𝑡1 ≤ℎ 𝑡2 and 𝑡2 ≤ℎ 𝑡3. Clearly,

if 𝑡1 [so ∪wr]∗ 𝑡3, 𝑡1 ≤ℎ 𝑡3. However, if 𝑡3 [so ∪wr]∗ 𝑡1, we would find one of the following
three scenarios:
– 𝑡1 [so∪wr]∗ 𝑡2, which is impossible by strong connectivity as that would mean 𝑡3 ≤ℎ 𝑡2.
– 𝑡2 [so ∪ wr]∗ 𝑡3, which is also impossible by strong connectivity, as 𝑡2 ≤ℎ 𝑡1.
– ¬(𝑡1 [so ∪ wr]∗ 𝑡2) and ¬(𝑡2 [so ∪ wr]∗ 𝑡3). Then, let us call 𝑒𝑖0 = ⊥ and 𝑒𝑖𝑛+1 =

min<or
dep(ℎ, 𝑡𝑖 , 𝑒𝑖𝑛) for 𝑖 ∈ {1, 2, 3}. Let’s prove by induction that if for every 𝑘 < 𝑛

𝑒1𝑛 ∉ 𝑡1, then 𝑒1𝑛 = 𝑒2𝑛 = 𝑒3𝑛 . Clearly this hold for 𝑛 = 0 and, assuming it holds for every

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Dynamic Partial Order Reduction for Checking Correctness Against Transaction Isolation Levels 1:35

𝑘 ≤ 𝑛 − 1, as 𝑡1 ≤ℎ 𝑡2, 𝑡2 ≤ℎ 𝑡3, we know 𝑒1𝑛 ≤or 𝑒2𝑛 ≤or 𝑒3𝑛 and as 𝑡3 [so ∪ wr]∗ 𝑡1,
if 𝑒1𝑛 ∉ 𝑡1, 𝑒3𝑛 ≤or 𝑒1𝑛 . In other words, they coincide. However, by lemma E.2, we
know minimalDependency(ℎ, 𝑡1, 𝑡3,⊥) halts, so there exists some minimal 𝑛0 such
that 𝑒1𝑛0 ∈ 𝑡

1; so 𝑒2𝑛0 ∈ 𝑡1. That implies 𝑡2 [so ∪ wr]∗ 𝑡1; which is impossible as 𝑡1 ≤ℎ 𝑡2.
We deduce then that either 𝑡1 [so ∪ wr]∗ 𝑡3 or ¬(𝑡3 [so ∪ wr]∗ 𝑡1). In the latter case, let’s
take the sequence 𝑒𝑖𝑛 , 𝑖 ∈ {1, 2, 3} defined in the last paragraph. Then, as by lemma E.2
minimalDependency(ℎ, 𝑡1, 𝑡3,⊥) halts, there exists a maximum index 𝑛0 such that 𝑒1𝑛0 =

𝑒2𝑛0 = 𝑒3𝑛0 . Then 𝑒1𝑛0+1 <or 𝑒
2
𝑛0+1 or 𝑒

2
𝑛0+1 <or 𝑒

3
𝑛0 ; so 𝑡1 ≤

ℎ 𝑡3.
• Antisymmetric Let 𝑡1, 𝑡2 s.t. 𝑡1 ≤ℎ 𝑡2 and 𝑡2 ≤ℎ 𝑡1. If 𝑡1 [so ∪ wr]∗𝑡2, then 𝑡1 = 𝑡2. If not, by

the symmetric argument, ¬(𝑡2 [so ∪ wr]∗𝑡1). In that situation, by lemma E.2 we know both
minimalDependency(ℎ, 𝑡1, 𝑡2,⊥) and minimalDependency(ℎ, 𝑡1, 𝑡2,⊥) halt and cannot be
satisfied at the same time. This contradicts that both 𝑡1 ≤ℎ 𝑡2 and 𝑡2 ≤ℎ 𝑡1 hold; so 𝑡1 = 𝑡2.

□

E.1.2 Oracle-respectful histories.

The second step in this proof is characterizing all reachable histories with some general invariant
that can be generalized to every total history. For doing so, we will show that for reachable histories
any history order coincide with its canonical order; so any property based on a history order can
be generalized to be based on its canonical order.

Definition E.5. An ordered history (ℎ, ≤) is or-respectful with respect to ≤ if it has at most one
pending transaction log and for every pair of events 𝑒 ∈ P, 𝑒′ ∈ ℎ s.t. 𝑒 ≤or 𝑒′, either 𝑒 ≤ 𝑒′ or
∃𝑒′′ ∈ ℎ, tr(ℎ, 𝑒′′) ≤or tr(ℎ, 𝑒) s.t. tr(ℎ, 𝑒′) [so ∪ wr]∗ tr(ℎ, 𝑒′′), 𝑒′′ ≤ 𝑒 and swapped(ℎ, 𝑒′′); where
if 𝑒 ∉ ℎ we state 𝑒′ ≤ 𝑒 always hold but 𝑒 ≤ 𝑒′ never does. We will denote it by Ror (ℎ, ≤).

Lemma E.6. Let 𝑝 a computable path. Every ordered history (ℎ, ≤ℎ) in 𝑝 is or-respectful with respect

to ≤ℎ .

Proof. We will prove this property by induction on the number of histories this path has. The
base case, the empty path, trivially holds; so let us prove the inductive case: for every path of at
most length 𝑛 the property holds. Let 𝑝 a path of length 𝑛 + 1 and ℎ< the last reachable history of
this path. As 𝑝 \ {ℎ} is a computable path of length 𝑛, the immediate predecessor of ℎ in 𝑝 , (ℎ𝑝 , <ℎ𝑝 )
is or-respectful with respect to <𝑝 . Let 𝑎 = next(ℎ𝑝 ).

Firstly, if 𝑎 is not a read nor a begin event and ℎ = ℎ𝑝 ⊕𝑎, as ≤ℎ is an extension of ≤ℎ𝑝 , 𝑎 belongs
to the only pending transaction and or orders transactions completely, we can deduce that ℎ is
or-respectful with respect to ≤.
In addition, if 𝑎 is a begin event and ℎ = ℎ𝑝 ⊕ 𝑎, let 𝑒 ∈ P, 𝑒′ ∈ ℎ s.t. 𝑒 <or 𝑒

′. If 𝑒 ∈ ℎ𝑝 or 𝑒′ ≠ 𝑎,
as ≤ℎ is an extension of ≤ℎ𝑝 and Ror (ℎ𝑝 , ≤ℎ𝑝 ) holds, the condition for satisfying Ror (ℎ, ≤) holds
with 𝑒 and 𝑒′. Moreover, as 𝑎 = minor P \ ℎ𝑝 , there is no event 𝑒 ∈ P \ ℎ𝑝 s.t. 𝑒 ≤or 𝑎; so Ror (ℎ, ≤)
holds.
Moreover, if 𝑎 is a read event and ℎ = ℎ𝑝 ⊕ wr(𝑡, 𝑎) for some transaction log 𝑡 , let us call 𝑒 ∈

P, 𝑒′ ∈ ℎ s.t. 𝑒 <or 𝑒
′. Once again, if 𝑒 ∈ ℎ or 𝑒′ ≠ 𝑎 the property holds; so let’s suppose 𝑒 ∈ P\ℎ𝑝 and

𝑒′ = 𝑎. Let 𝑏 = begin(tr(ℎ, 𝑎)), that also belongs to ℎ𝑝 . Firstly, as 𝑒 ≤or tr(ℎ, 𝑒′) = tr(ℎ,𝑏) we know
that 𝑒 ≤or 𝑏. Secondly, as Ror (ℎ𝑝 , ≤ℎ𝑝 ), 𝑒 ∉ ℎ𝑝 and 𝑒 ≤or 𝑏; there exists 𝑐 ∈ ℎ𝑝 , tr(ℎ𝑝 , 𝑐) ≤or tr(ℎ𝑝 , 𝑎)
s.t. (tr(ℎ𝑝 , 𝑏), tr(ℎ𝑝 , 𝑐)) ∈ (so ∪ wr)∗, 𝑐 ≤ 𝑏 and swapped((ℎ𝑝 , <ℎ𝑝 ), 𝑐). As tr(ℎ, 𝑎) = tr(ℎ,𝑏) and
swapped((ℎ𝑝 , <ℎ𝑝 ), 𝑐) implies swapped(ℎ<, 𝑐), we conclude Ror (ℎ, ≤).
But if no previous case is satisfied, it is because ℎ = swap((ℎ𝑝 , <ℎ𝑝 ), 𝑟 , 𝑡) for some 𝑟, 𝑡 ∈ ℎ𝑝 s.t.

Optimality((ℎ𝑝 , <ℎ𝑝 ), 𝑟 , 𝑡) holds. Let 𝑒, 𝑒′ two events s.t. 𝑒 ≤or 𝑒′. On one hand, if 𝑒 ≤ 𝑒′, Ror (ℎ, 𝑒)
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holds. On the other hand, if 𝑒′ < 𝑒 and 𝑒′ ≤ℎ𝑝 𝑒 , as Ror (ℎ𝑝 , ≤ℎ𝑝 ) holds and no swapped event is
deleted by Optimality((ℎ𝑝 , <ℎ𝑝 ), 𝑟 , 𝑡)’s definition, the property is also satisfied. Finally, if 𝑒′ < 𝑒

and 𝑒 ≤ℎ𝑝 𝑒′, 𝑒 has to be a deleted event so 𝑒 ∈ P \ ℎ. As 𝑟 ≤ℎ𝑝 𝑒 , if 𝑒 ≤or 𝑎, as 𝑒 ≰ 𝑎, there
would exist a 𝑐 ∈ ℎ𝑝 , tr(ℎ𝑝 , 𝑐) ≤or tr(ℎ𝑝 , 𝑒) ≤or tr(ℎ𝑝 , 𝑟 ) s.t. (tr(ℎ𝑝 , 𝑟 ), tr(ℎ𝑝 , 𝑐)) ∈ (so ∪ wr)∗ and
swapped(ℎ<, 𝑐). However, this is impossible as tr(ℎ<, 𝑟 ) has as maximal event 𝑟 and the algorithm
preserves at most one pending transaction; so 𝑒 ≤or 𝑎. Taking 𝑒′′ = 𝑟 the property is witnessed. □

Proposition E.7. For any reachable history ℎ, ≤ℎ≡≤ℎ .

Proof. For proving this equivalence, we will show that in any computable path and for any
ordered history (ℎ, ≤ℎ), if 𝑡 ≤ℎ 𝑡 ′, then 𝑡 ≤ℎ 𝑡 ′, as by lemma E.4 ≤ℎ is a total order and therefore
they have to coincide. We will prove this by induction on the number of histories a path has. The
base case, the empty path, trivially holds; so let us prove the inductive case: for every path of at
most length 𝑛 the property holds. Let 𝑝 a path of length 𝑛 + 1 and ℎ<ℎ

the last reachable ordered
history of this path. As 𝑝 \ {ℎ} is a computable path of length 𝑛, the immediate predecessor of ℎ in
𝑝 , ≤ℎ𝑝≡≤ℎ𝑝 . Let 𝑒 = next(ℎ𝑝 ). Firstly, let’s note that if ℎ is an extension of ℎ𝑝 , as Ror (ℎ𝑝 , <ℎ𝑝 ), the
property can only fail while comparing a transaction 𝑡 with tr(ℎ, 𝑒).
• ℎ extends ℎ𝑝 and 𝑒 is a begin: As dep(ℎ𝑝 , 𝑡,⊥) = dep(ℎ, 𝑡,⊥) for every transaction in ℎ𝑝 , if
𝑡 ≤ℎ𝑝 𝑡 ′, then 𝑡 ≤ℎ 𝑡 ′. Moreover, dep(ℎ, tr(ℎ, 𝑒),⊥) = {𝑒} = minor P \ ℎ𝑝 . By lemma E.6 ℎ is
or-respectful, so for every 𝑡 , minor dep(ℎ, 𝑡,⊥) <or 𝑒 ; which implies 𝑡 <ℎ

tr(ℎ, 𝑒). By lemma
E.4, ≤ℎ is a total order, so it coincides with ≤ℎ .
• ℎ extends ℎ𝑝 and 𝑒 is not a begin: As no transaction depends on tr(ℎ, 𝑒) and tr(ℎ, 𝑒) =

last(ℎ𝑝 ), if we prove that for every pair of transactions minimalDependency(ℎ𝑝 , 𝑡 ′, 𝑡 ′′,⊥)
= minimalDependency(ℎ, 𝑡 ′, 𝑡 ′′,⊥), the lemma would hold. On one hand,
dep(ℎ, tr(ℎ, 𝑒),⊥) = dep(ℎ𝑝 , tr(ℎ, 𝑒),⊥) = tr(ℎ, 𝑒) and in the other hand, by lemma E.6,
minor dep(ℎ𝑝 , 𝑡,⊥) <or tr(ℎ, 𝑒). Finally, as 𝑒 ∉ dep(ℎ, 𝑡, 𝑒′), for every 𝑡 ≠ tr(ℎ, 𝑒), 𝑒′ ≠ ⊥, for
every pair of transactions 𝑡 ′, 𝑡 ′′, minimalDependency(ℎ𝑝 , 𝑡 ′, 𝑡 ′′⊥) =

minimalDependency(ℎ, 𝑡 ′, 𝑡 ′′,⊥).
• ℎ = swap(ℎ𝑝 , 𝑟 , 𝑡), where 𝑡 = tr(ℎ, 𝑒): As Optimality(ℎ𝑝 , 𝑟 , 𝑡) is satisfied and ℎ is
or-respectful, for every event 𝑒′ and transaction 𝑡 ′ in ℎ, minor dep(ℎ𝑝 , 𝑡 ′, 𝑒′) =

minor dep(ℎ, 𝑡 ′, 𝑒′), so for every pair of transactions minimalDependency(ℎ𝑝 , 𝑡 ′, 𝑡 ′′,⊥) =
minimalDependency(ℎ, 𝑡 ′, 𝑡 ′′,⊥). In particular, this implies 𝑡 ′ ≤ℎ𝑝 𝑡 ′′ if and only if 𝑡 ′ ≤ℎ 𝑡 ′′

for every pair 𝑡 ′, 𝑡 ′′ ∈ ℎ. Finally, as for every 𝑡 ′ ∈ ℎ, 𝑡 ′ ≤ℎ tr(ℎ, 𝑟 ) (because tr(ℎ, 𝑟 ) is
(so ∪ wr)+-maximal); we conclude that ≤ℎ≡≤ℎ .

□

Proposition E.7 is a very interesting result as it express the following fact: regardless of the
computable path that leads to a history, the final order between events will be the same. Therefore,
all possible history orders collapse to one, the canonical one. This result will have a key role during
both completeness and optimality, as it restricts the possible histories that precede another while
describing the computable path leading to it. In addition, proposition E.7 together with lemma
E.6 justify enlarging definition E.5 with a general order as for reachable histories, Ror (ℎ, ≤ℎ) is
equivalent to Ror (ℎ, ≤ℎ). From what follows, we will simply state ℎ is or-respectful and we will
denote it by Ror (ℎ). Moreover, we will assume every history is ordered with the canonical order.

Corollary E.8. Let ℎ𝑝 a reachable history and let ℎ a immediate successor of ℎ𝑝 whose last event

𝑟 is a read. Then ℎ< = swap((ℎ𝑝 , <ℎ𝑝 ), 𝑟 , 𝑡) if and only if swapped(ℎ, 𝑟 ) does.

Proof. ⇒
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Let’s suppose that ℎ< = swap((ℎ𝑝 , <ℎ𝑝 ), 𝑟 , 𝑡) for some 𝑡 transaction. As the last event in ℎ

is 𝑟 and by definition of swap function no event reads from wr
−1 (𝑟 ) in ℎ besides 𝑟 , to prove

swapped(ℎ, 𝑟 ) holds we just need to show that 𝑟 <or 𝑡 . By lemma E.6, Ror (ℎ𝑝 ) holds. As 𝑟 <ℎ𝑝 𝑡 ,
Optimality((ℎ𝑝 , <ℎ𝑝 ), 𝑟 , 𝑡) holds and 𝑡 is (so ∪ wr)+-maximal, we conclude that 𝑟 <or 𝑡 .
⇐= Let’s suppose that ℎ = ℎ𝑝 ⊕ 𝑟 ⊕ wr(𝑟, 𝑡) for some transaction 𝑡 . Let’s suppose that 𝑟 <or 𝑡 .

As Ror (ℎ𝑝 ), there exists some event 𝑒′′ s.t. tr(ℎ𝑝 , 𝑒′′) ≤ tr(ℎ, 𝑟 ), 𝑡 [so ∪ wr]∗tr(ℎ, 𝑒′′) and 𝑒′′ ≤ 𝑟 so
¬(swapped(ℎ, 𝑟 )).

□

Lemma E.9. Any total history is or-respectful.

Proof. Let ℎ be a total history and 𝑡, 𝑡 ′ a pair of transactions s.t. 𝑡 ≤or 𝑡 ′. If 𝑡 ≤ℎ 𝑡 ′, then the
statement is satisfied; so let’s assume the contrary: 𝑡 ′ ≤ℎ 𝑡 . If (𝑡 ′, 𝑡) ∈ (so ∪ wr)∗, then for every
𝑒 ∈ 𝑡, 𝑒′ ∈ 𝑡 ′ ∃𝑐 ∈ ℎ s.t. tr(ℎ, 𝑐) ≤or tr(ℎ, 𝑒), (tr(ℎ, 𝑒′), tr(ℎ, 𝑐)) ∈ (so ∪ wr)∗, swapped(ℎ, 𝑐) and
𝑐 ≤ℎ 𝑒; so the property is satisfied. Otherwise, by definition of minimalDependency, there exists
𝑟 ′ ∈ ℎ s.t. (𝑡 ′, tr(ℎ, 𝑟 ′)) ∈ (so∪wr)∗ and tr(ℎ, 𝑟 ′) ≤or 𝑡 . Moreover, by canonicalOrder’s definition,
tr(ℎ, 𝑟 ) ≤ℎ 𝑡 . Finally swapped(ℎ, 𝑟 ′) holds as it is the minimum element according or. To sum up,
Ror (ℎ) holds. □

E.1.3 Previous of a history.

As a third and final step in our proof, we define the function previous that, for a every history
ℎ, if prev(ℎ) is reachable, then ℎ is also reachable. Moreover, prev(ℎ) will belong to the same
computable path.

Algorithm 4 prev

1: procedure prev(ℎ)
2: if ℎ = ∅ then
3: return ∅
4: 𝑎 ← last(ℎ)
5: if ¬swapped(ℎ, 𝑎) then
6: return ℎ \ 𝑎
7: else
8: let 𝑡 s.t. (𝑡, 𝑟 ) ∈ wr.
9: return maxCompletion(ℎ \ 𝑎, {𝑒 | 𝑒 ∉ (ℎ \ 𝑎) ∧ 𝑒 <or 𝑡})
10: procedure maxCompletion(ℎ, 𝐷)
11: if 𝐷 ≠ ∅ then
12: 𝑒 ← min<or

𝐷

13: if type(𝑒) ≠ read then
14: return maxCompletion(ℎ ⊕ 𝑒, 𝐷 \ {𝑒})
15: else
16: let 𝑡 s.t. readLatest𝐼 (ℎ ⊕ 𝑒 ⊕ wr(𝑡, 𝑒), 𝑒,) holds
17: return maxCompletion(ℎ ⊕ 𝑒 ⊕ wr(𝑡, 𝑒), 𝐷 \ {𝑒})
18: else
19: return ℎ

First, we show that the invariant of our algorithm is preserved via prev.
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Lemma E.10. For every or-respectful history ℎ, prev(ℎ) is also or-respectful.

Proof. Let suppose ℎ ≠ ∅, ℎ𝑝 = prev(ℎ), 𝑎 = last(ℎ), 𝑒 ∈ P and 𝑒′ ∈ ℎ𝑝 s.t. 𝑒 ≤or 𝑒′. We
explore different cases depending if 𝑒, 𝑒′ belong to ℎ or not. If 𝑒′ ∈ ℎ𝑝 \ ℎ, ¬(swapped(ℎ𝑝 , 𝑒))
and ¬(swapped(ℎ𝑝 , 𝑒′)) holds. As min<or

dep(ℎ, tr(ℎ, 𝑒′),⊥) = begin(tr(ℎ, 𝑒′)), we obtain that
min<or

dep(ℎ, tr(ℎ, 𝑒′)) ≤or 𝑒′ ≤or begin(tr(ℎ, 𝑒′)). Therefore, as 𝑒′ ∈ ℎ𝑝 ∈ ℎ, ¬(tr(ℎ, 𝑒′) [so ∪
wr]+ tr(ℎ, 𝑒)), so 𝑒 ≤ℎ 𝑒′. And if 𝑒′ ∈ ℎ, either 𝑒 ≤ℎ 𝑒′ or 𝑒′ ≤ℎ 𝑒 . In the former case, both are in ℎ

and therefore, in ℎ𝑝 . As it cannot happen that 𝑒′ ∈ tr(ℎ, 𝑎) and 𝑒 ≤ℎ𝑝 𝑎 because swapped(ℎ, 𝑎) and
𝑒 ≤or 𝑒′, we conclude that 𝑒 ≤ℎ 𝑒′ (≤ℎ𝑝 keeps the relative orders between transactions different
from tr(ℎ, 𝑎) and by lemma E.6 they coincide). In the latter case, by Ror (ℎ), there exists 𝑒′′ that
witness it. In particular, swapped(ℎ, 𝑒′′) holds, so 𝑒′′ ∈ ℎ𝑝 . 𝑒′′ witness Ror (ℎ𝑝 ) holds. In the three
cases we deduce that Ror (ℎ𝑝 ).

□

Next, we have to prove that previous is a sound function, i.e. the composition between explore-ce
and prev give us the identity. For doing so, in the case a history is a swap, we deduce that both
histories should contain the same elements and they read the same; so they have to coincide.

Lemma E.11. For every consistent history or-respectful ℎ, if prev(ℎ) is reachable, then ℎ is also

reachable.

Proof. Let suppose ℎ ≠ ∅, ℎ𝑝 = prev(ℎ) and 𝑎 = last(ℎ). If ¬swapped(ℎ, 𝑎), let ℎ𝑛 = ℎ𝑝 ⊕ 𝑎
if 𝑎 is not a read and ℎ𝑛 = ℎ𝑝 ⊕ 𝑎 ⊕ wr(𝑡, 𝑎), where 𝑡 is the transaction s.t. (𝑡, 𝑟 ) ∈ wr, otherwise.
Either way, ℎ𝑛 is always reachable and it coincides with ℎ. On the contrary, if swapped(ℎ, 𝑎),
𝑎 is a read event and it swapped; so let us call 𝑡 to the transaction s.t. (𝑡, 𝑎) ∈ wr. Firstly, as
swapped(ℎ, 𝑎), 𝑎 <or 𝑡 , and by lemma E.6, Ror (ℎ𝑝 ) holds, so 𝑎 <ℎ𝑝 𝑡 does; which let us conclude
ComputeReorderings(ℎ𝑝 ) will always return (𝑎, 𝑡) as a possible swap pair. In addition, all trans-
actions in ℎ𝑝 are non-pending and (𝑡, 𝑎) ∈ wr, so in particular last(ℎ𝑝 ) is an commit event. If we
call ℎ𝑠 = swap(ℎ𝑝 , 𝑎, 𝑡), and we prove that ℎ𝑝 \ ℎ = ℎ𝑝 \ ℎ𝑠 holds, then we would deduce ℎ = ℎ𝑠 as
wr(𝑡, 𝑎) in both ℎ𝑝 , ℎ𝑠 and ℎ ⊆ ℎ𝑝 , ℎ𝑠 ⊆ ℎ𝑝 ; which would allow us to conclude ℎ is reachable from
ℎ𝑝 .

On one hand, if 𝑒 ∈ ℎ𝑝 \ℎ, we deduce that 𝑒 ∉ ℎ and 𝑒 <or 𝑡 . In particular, ¬(tr(ℎ, 𝑒) [so∪wr]∗ 𝑡).
Moreover, if 𝑒 ≤or 𝑎, by Ror (ℎ), either 𝑒 ≤ℎ 𝑎 or ∃𝑒′′ ∈ ℎ, 𝑒′′ ≤or 𝑒 s.t. 𝑡 (𝑎) [so ∪ wr]∗tr(ℎ, 𝑒′′),
𝑒′′ ≤ℎ 𝑒 and swapped(ℎ, 𝑒′′); both impossible situations as 𝑒 ∉ ℎ and 𝑎 = last(ℎ); so 𝑎 ≤or 𝑒 . In
other words, 𝑒 ∈ ℎ𝑝 \ ℎ𝑠 .
On the other hand, 𝑒 ∈ ℎ𝑝 \ ℎ𝑠 if and only if ¬(tr(ℎ, 𝑒) [so ∪ wr]∗ 𝑡 (𝑤)) and 𝑎 <or 𝑒 <or 𝑤 . If 𝑒

would belong to ℎ then 𝑒 ≤ℎ 𝑎. As ℎ is or-respectful and 𝑎 ≤or 𝑒 , we deduce there exists a 𝑒′′ ∈ ℎ s.t.
tr(ℎ, 𝑒′′) ≤or 𝑡 (𝑎), tr(ℎ, 𝑒) [so ∪ wr]∗tr(ℎ, 𝑒′′) and swapped(ℎ, 𝑒′′). Moreover, as 𝑒′′ ∈ ℎ, 𝑒′′ ∈ ℎ𝑝 .
By corollary E.8 swapped(ℎ𝑝 , 𝑒′′) and Optimality(ℎ𝑝 , 𝑎, 𝑡) hold, 𝑒′′ ∈ ℎ𝑠 and so 𝑒 does. This result
leads to a contradiction, so 𝑒 ∉ ℎ; i.e. 𝑒 ∈ ℎ𝑝 \ ℎ. □

Corollary E.12. In a consistent or-respectful history ℎ whose previous history is reachable,

if 𝑎 = last(ℎ), swapped(ℎ, 𝑎) and 𝑡 is a transaction such that (𝑡, 𝑎) ∈ wr, ℎ coincides with

swap(prev(ℎ), 𝑎, 𝑡).

Proof. It comes straight away from the proof of lemma E.11. □

Once proven that prev is sound, let us prove that for every history we can compose prev a finite
number of times obtaining the empty history. We are going to prove it by induction on the number
of swapped events, so we prove first the recursive composition finishes in finite time and then we
conclude our claim.
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Lemma E.13. For every non-empty consistent or-respectful historyℎ,ℎ𝑝 = prev(ℎ) and𝑎 = last(ℎ),
if swapped(ℎ, 𝑎) then {𝑒 ∈ ℎ𝑝 | swapped(ℎ𝑝 , 𝑒)} = {𝑒 ∈ ℎ | swapped(ℎ, 𝑒)}\{𝑎}, otherwiseℎ𝑝 = ℎ\𝑎.

Proof. Let 𝑎 = last(ℎ) and ℎ′ = ℎ \ 𝑎. If ¬(swapped(ℎ, 𝑎)), then ℎ𝑝 = ℎ′ and the lemma holds
trivially. Otherwise, as ℎ𝑝 = maxCompletion(ℎ′), we will show that every event not belonging
to ℎ𝑝 \ ℎ′ is not swapped by induction on every recursive call to maxCompletion. Let us call
𝐷 = {𝑒 | 𝑒 ∉ ℎ′ ∧ 𝑒 <or}. This set, intuitively, contain all the events that would have been deleted
from a reachable history ℎ to produce ℎ𝑝 . In this setting, let us call ℎ |𝐷 | = ℎ′, 𝐷 |𝐷 | = 𝐷 and
𝐷𝑘 = 𝐷𝑘+1 \ {min<or

𝐷𝑘+1}, 𝑒𝑘 = min<or
𝐷𝑘 for every 𝑘, 0 ≤ 𝑘 < |𝐷 | (i.e. 𝐷𝑘 = 𝐷𝑘+1 \ {𝑒𝑘+1}). We

will prove the lemma by induction on 𝑛 = |𝐷 | −𝑘 , constructing a collection of or-respectful histories
ℎ𝑘 , 0 ≤ 𝑘 < |𝐷 |, such that each one is an extension of its predecessor with a non-swapped event.
The base case, ℎ |𝐷 | is trivial as by its definition it corresponds with ℎ′. Let’s prove the in-

ductive case: {𝑒 | swapped(ℎ𝑘+1, 𝑒)} = {𝑒 | swapped(ℎ′, 𝑒)}. If 𝑒𝑘+1 is not a read event, ℎ𝑘 =

ℎ𝑘+1 ⊕ 𝑒𝑘+1, Ror (ℎ𝑘 ) and {𝑒 | swapped(ℎ𝑘 , 𝑒)} = {𝑒 | swapped(ℎ′, 𝑒)}; as only read events can
be swapped. Otherwise, 𝑒𝑘+1 is a read event. By the isolation level’s causal-extensibility there
exists a transaction 𝑓𝑘+1 that writes the same variable as 𝑒𝑘+1, (𝑓𝑘+1, tr(ℎ, 𝑒𝑘+1)) ∈ (so ∪ wr)∗ and
ℎ𝑘+1 ⊕ 𝑒𝑘+1 ⊕ wr(𝑓𝑘+1, 𝑒𝑘+1) is consistent. Moreover, if 𝑒𝑘+1 reads from any causal dependent ele-
ment 𝑓 ′, 𝑓 ′ in ℎ𝑘+1, it cannot be swapped: as Ror (ℎ𝑘+1) holds, if 𝑒𝑘+1 <or 𝑓

′ there must be an event
𝑐𝑘+1 s.t. tr(ℎ, 𝑐𝑘+1) ≤or tr(ℎ, 𝑒𝑘+1) and (𝑓 ′, tr(ℎ, 𝑐𝑘+1)) ∈ (so ∪ wr)∗. Hence, {𝑒 | swapped(ℎ𝑘+1, 𝑒)}
= {𝑒 | swapped(ℎ𝑘+1 ⊕ 𝑒𝑘+1 ⊕ wr(𝑓 ′, 𝑒𝑘+1), 𝑒)}.

Let 𝐸𝑘+1 = {𝑡 | ℎ𝑘+1⊕𝑒𝑘+1⊕wr(𝑡, 𝑒𝑘+1) |= 𝐼 ∧ {𝑒 | swapped(ℎ𝑘+1, 𝑒)} = 𝑠{𝑒 | swapped(ℎ𝑘+1⊕𝑒𝑘+1⊕
wr(𝑡, 𝑒𝑘+1), 𝑒)}} and let 𝑡𝑘+1 = max≤ℎ𝑘+1 {𝑡 ∈ 𝐸𝑘+1 | (𝑡, tr(ℎ𝑘+1, 𝑒𝑘+1)) ∈ (so ∪ wr)∗}. This element is
well defined as 𝑓𝑘+1 belongs to 𝐸𝑘+1. Therefore, ℎ𝑘 = ℎ𝑘+1 ⊕ 𝑒𝑘+1 ⊕ wr(𝑡𝑘+1, 𝑒𝑘+1) is consistent and
{𝑒 | swapped(ℎ𝑘 , 𝑒)} = {𝑒 | swapped(ℎ′, 𝑒)}. Moreover, let’s remark that as 𝑡𝑘+1 is the maximum
transaction according to ≤ℎ𝑘+1 s.t. is consistent and {𝑒 | swapped(ℎ𝑘 , 𝑒)} = {𝑒 | swapped(ℎ′, 𝑒)}. In
addition, by construction, it also satisfies readLatest𝐼 (ℎ𝑘 , 𝑒𝑘+1,𝑤𝑘+1,). Finally, ℎ𝑘 is also or-respectful
as 𝑒𝑘+1 is not swapped and Ror (ℎ𝑘+1) holds.
Thus, after applying induction, we obtainℎ𝑝 = ℎ0; which let us conclude {𝑒 ∈ ℎ𝑝 | swapped(ℎ𝑝 , 𝑒)} =
{𝑒 ∈ ℎ′ | swapped(ℎ′, 𝑒)} = {𝑒 ∈ ℎ | swapped(ℎ, 𝑒)} \ {𝑎}. □

Lemma E.14. For every consistent or-respectful history ℎ there exists some 𝑘ℎ ∈ N such that

prev𝑘ℎ (ℎ) = ∅.

Proof. This lemma is immediate consequence of lemma E.13. Let us call 𝜉 (ℎ) =

|{𝑒 ∈ ℎ | swapped(ℎ, 𝑒)}|, the number of swapped events in ℎ, and let us prove the lemma by
induction on (𝜉 (ℎ), |ℎ |). The base case, 𝜉 (ℎ) = |ℎ | = 0 is trivial as ℎ would be ∅; so let’s assume
that for every history ℎ such that 𝜉 (ℎ) < 𝑛 or 𝜉 (ℎ) = ℎ ∧ |ℎ | < 𝑚 there exists such 𝑘ℎ . Let ℎ then
a history s.t. 𝜉 (ℎ) = 𝑛 and |ℎ | = 𝑚. ℎ𝑝 = prev(ℎ). On one hand, if ℎ𝑝 = ℎ \ 𝑎 then 𝜉 (𝑥𝑝 ) = 𝜉 (ℎ)
and |ℎ𝑝 | = |ℎ | − 1. On the other hand, if ℎ𝑝 ≠ ℎ \ 𝑎, 𝜉 (ℎ𝑝 ) = 𝜉 (ℎ) − 1. In any case, by induction
hypothesis on ℎ𝑝 , there exists an integer 𝑘ℎ𝑝 such that prev𝑘ℎ𝑝 (ℎ𝑝 ) = ∅. Therefore, 𝑘ℎ = 𝑘ℎ𝑝 + 1
satisfies prev𝑘ℎ (ℎ) = ∅. □

Proposition E.15. For every consistent or-respectful history ℎ exists 𝑘 ∈ N and some sequence of

or-respectful histories {ℎ𝑛}𝑘𝑛=0, ℎ0 = ∅ and ℎ𝑘 = ℎ such that the algorithm will compute.

Proof. Let ℎ a history, 𝑘 the minimum integer such that prev𝑘 (ℎ) = ∅, which exists thanks to
lemma E.14 and 𝐶 = {prev𝑘−𝑛 (ℎ)}𝑘𝑛=0 a set of indexed histories. By the collection’s definition and
lemma E.10, ℎ0 = prev𝑘 (ℎ) = ∅, ℎ𝑘 = prev0 (ℎ) = ℎ and Ror (ℎ𝑛) for every 𝑛 ∈ N; so let us prove by
induction on 𝑛 that every history in 𝐶 is reachable. The base case, ℎ0, is trivially achieved; as it is
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always reachable. In addition, by lemma E.11, we know that if ℎ𝑛 is reachable, ℎ𝑛+1 is it too; which
proves the inductive step. □

Theorem E.16. The algorithm explore-ce is complete.

Proof. By lemma E.9, any consistent total history is or-respectful. As a consequence of propo-
sition E.15, there exist a sequence of reachable histories which ℎ belongs to; so in particular, ℎ is
reachable. □

E.2 Optimality
For proving optimality we are going to exploit two properties already studied for completeness:
or-respectfulness and the canonical order. Then, as algorithm explore-ce is sound and complete,
we will prove that any computable path leading to a consistent history is the one computed in the
completeness’ proof.

Theorem E.17. Algorithm explore-ce is strongly optimal.

Proof. As the model is causal-extensible, any algorithm optimal is also strongly optimal. Let
us prove that for every reachable history there is only a computable path that leads to it from ∅.
Let’s suppose there exists a history ℎ that is reached 𝑝1, 𝑝2 by two computable paths. By lemma
E.7, we know that ≤ℎ≡≤ℎ . However, ≤ℎ is an order that does not depend on the computable path
that leads to ℎ; so neither does ≤ℎ . Therefore, we can assume without loss of generality that ℎ is a
history with minimal value of 𝜉 (ℎ) = |{𝑒 ∈ ℎ |swapped(ℎ, 𝑒)}| and in case of tie, that is minimal
with respect |ℎ |; values independent of the computable path that leads to ℎ.
We can also assume without loss of generality that the predecessor of ℎ in 𝑝1 is ℎ1 = prevℎ,

and ℎ2 is the predecessor of ℎ in 𝑝2. If we prove ℎ1 and ℎ2 are identical, 𝑝1 and 𝑝2 have to also be
identical and therefore, the algorithm would be optimal. Firstly, if last(ℎ) is not a swapped read
event, by the definition of next function ℎ2 = ℎ \ last(ℎ) = ℎ1. On the contrary, let’s suppose
𝑟 = last(ℎ) is a swapped event that reads from a transaction 𝑡 . Because swapped(ℎ, 𝑟 ) holds, from
ℎ2 to ℎ it has to have happened a swap between 𝑟 and𝑤 . But by corollary E.12, ℎ = swap(ℎ1, 𝑟 ,𝑤),
so ℎ1 ↾ℎ\𝑟= ℎ2 ↾ℎ\𝑟 . As ℎ1, ℎ2 are both or-respectful, 𝑒 ∈ ℎ1 \ ℎ ⇐⇒ 𝑒 ∈ ℎ2 \ ℎ. Finally, as
Optimality(ℎ𝑖 , 𝑟 ,𝑤) holds for 𝑖 ∈ {1, 2}, for every read event 𝑒 in ℎ1∩ℎ2 there exists a transaction
𝑡𝑒 s.t. wr(𝑒, 𝑡𝑒 ) for both histories. □
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F EXPERIMENTAL DATA
F.1 Application Scalability

CC CC + SI CC + SER
Histories End states Mem. Time Histories End states Mem. Time Histories End states Mem. Time

courseware-1 48 48 256MB 00:00:03 27 48 256MB 00:00:03 9 48 256MB 00:00:03
courseware-2 12 12 256MB 00:00:05 11 12 256MB 00:00:05 6 12 256MB 00:00:05
courseware-3 370 370 310MB 00:00:07 54 370 314MB 00:00:09 3 370 308MB 00:00:08
courseware-4 18 18 256MB 00:00:02 5 18 256MB 00:00:02 1 18 256MB 00:00:02
courseware-5 34 34 256MB 00:00:03 1 34 256MB 00:00:04 1 34 256MB 00:00:06
shoppingcart-1 32 32 256MB 00:00:03 3 32 310MB 00:00:03 1 32 256MB 00:00:03
shoppingcart-2 174 174 256MB 00:00:05 20 174 256MB 00:00:06 1 174 256MB 00:00:06
shoppingcart-3 77 77 256MB 00:00:04 34 77 256MB 00:00:04 14 77 256MB 00:00:04
shoppingcart-4 445 445 256MB 00:00:06 226 445 370MB 00:00:08 1 445 370MB 00:00:07
shoppingcart-5 170 170 308MB 00:00:05 68 170 256MB 00:00:05 10 170 256MB 00:00:06

tpcc-1 22 22 407MB 00:00:08 1 22 450MB 00:00:08 1 22 392MB 00:00:07
tpcc-2 88 88 375MB 00:00:15 2 88 411MB 00:00:16 2 88 378MB 00:00:16
tpcc-3 63 63 447MB 00:00:09 5 63 458MB 00:00:10 1 63 444MB 00:00:10
tpcc-4 105 105 420MB 00:00:11 22 105 478MB 00:00:12 1 105 444MB 00:00:12
tpcc-5 1108 1108 444MB 00:01:28 57 1108 450MB 00:01:35 5 1108 566MB 00:01:26

twitter-1 16 16 309MB 00:00:03 10 16 256MB 00:00:03 3 16 308MB 00:00:03
twitter-2 59 59 308MB 00:00:03 5 59 256MB 00:00:04 1 59 256MB 00:00:04
twitter-3 114 114 256MB 00:00:05 36 114 308MB 00:00:06 6 114 256MB 00:00:05
twitter-4 1995 1995 308MB 00:01:17 84 1995 370MB 00:01:27 84 1995 308MB 00:01:17
twitter-5 1995 1995 308MB 00:01:09 84 1995 308MB 00:01:16 84 1995 311MB 00:01:09

wikipedia-1 32 32 308MB 00:00:06 2 32 326MB 00:00:05 2 32 318MB 00:00:05
wikipedia-2 138 138 372MB 00:00:12 3 138 370MB 00:00:11 1 138 308MB 00:00:10
wikipedia-3 156 156 370MB 00:00:09 1 156 444MB 00:00:09 1 156 377MB 00:00:08
wikipedia-4 53 53 323MB 00:00:09 12 53 323MB 00:00:09 1 53 327MB 00:00:09
wikipedia-5 3208 3208 308MB 00:00:52 2 3208 370MB 00:01:00 1 3208 322MB 00:00:51

RA + CC RC + CC true + CC DFS(CC)
Histories End states Mem. Time Histories End states Mem. Time Histories End states Mem. Time End states Mem. Time

courseware-1 48 164 256MB 00:00:04 48 3456 312MB 00:00:17 48 9216 310MB 00:00:31 73482 447MB 00:11:30
courseware-2 12 20 256MB 00:00:05 12 96 256MB 00:00:06 12 96 256MB 00:00:06 29304 469MB 00:04:33
courseware-3 370 1841 308MB 00:00:19 20 719429 308MB TL 20 786434 308MB TL 61012 308MB TL
courseware-4 18 32 256MB 00:00:02 18 1984 308MB 00:00:11 18 1984 312MB 00:00:11 93896 308MB 00:11:48
courseware-5 34 120 308MB 00:00:06 34 99048 308MB 00:05:34 34 138480 308MB 00:06:45 46063 523MB TL
shoppingcart-1 32 80 256MB 00:00:04 32 6912 308MB 00:00:54 32 9216 370MB 00:01:08 126678 444MB TL
shoppingcart-2 174 1017 308MB 00:00:13 174 78336 316MB 00:05:41 174 221184 370MB 00:12:34 166311 308MB TL
shoppingcart-3 77 231 256MB 00:00:06 77 4940 313MB 00:00:44 77 8960 444MB 00:01:10 164385 444MB TL
shoppingcart-4 445 477 256MB 00:00:08 445 734464 370MB TL 445 858867 444MB TL 262924 444MB TL
shoppingcart-5 170 450 308MB 00:00:08 170 15504 308MB 00:00:55 170 117936 308MB 00:04:54 122523 379MB TL

tpcc-1 22 80 533MB 00:00:12 4 78164 568MB TL 1 63588 380MB TL 17908 1409MB TL
tpcc-2 88 564 533MB 00:00:57 1 77865 716MB TL 1 131450 533MB TL 21885 1230MB TL
tpcc-3 63 216 533MB 00:00:18 5 36618 669MB TL 5 38861 568MB TL 20466 1194MB TL
tpcc-4 105 114 449MB 00:00:12 17 124679 572MB TL 9 116126 640MB TL 20190 1174MB TL
tpcc-5 1109 19463 533MB 00:21:05 1 83644 464MB TL 1 84325 444MB TL 25389 1349MB TL

twitter-1 16 20 256MB 00:00:03 16 2208 308MB 00:00:34 16 4608 308MB 00:00:56 35056 539MB 00:28:45
twitter-2 59 147 256MB 00:00:05 59 1728 308MB 00:00:18 59 1728 321MB 00:00:18 159100 447MB TL
twitter-3 114 216 308MB 00:00:07 114 1296 308MB 00:00:19 114 1296 374MB 00:00:18 108792 444MB 00:22:47
twitter-4 195 6860 308MB 00:03:37 10 99558 374MB TL 1 163231 322MB TL 55198 444MB TL
twitter-5 195 6860 308MB 00:03:18 84 61498 444MB TL 84 118514 322MB TL 55198 444MB TL

wikipedia-1 32 48 256MB 00:00:05 32 16480 444MB 00:03:12 32 49280 308MB 00:08:13 54172 370MB TL
wikipedia-2 138 352 371MB 00:00:13 1 125438 540MB TL 1 122187 489MB TL 8169 561MB TL
wikipedia-3 156 380 370MB 00:00:14 156 115200 544MB 00:20:56 156 161280 444MB 00:28:28 69935 568MB TL
wikipedia-4 53 104 372MB 00:00:11 1 63360 465MB TL 1 63023 4652B TL 25044 768MB TL
wikipedia-5 3208 3807 311MB 00:01:00 32 16480 308MB 00:03:22 15 30862 444MB TL 1226 563MB TL

F.2 Session Scalability

One session Two sessions Three sessions Four sessions Five sessions
Histories Mem. Time Histories Mem. Time Histories Mem. Time Histories Mem. Time Histories Mem. Time

tpcc-1 1 256MB 00:00:02 6 256MB 00:00:04 72 447MB 00:00:13 4662 783MB 00:05:41 41371 1386MB TL
tpcc-2 1 256MB 00:00:02 30 313MB 00:00:06 2071 640MB 00:02:00 28563 1618MB TL 18122 1103MB TL
tpcc-3 1 256MB 00:00:02 4 326MB 00:00:04 100 562MB 00:00:18 24373 1152MB TL 21035 1038MB TL
tpcc-4 1 256MB 00:00:02 4 342MB 00:00:05 527 582MB 00:00:44 21118 1352MB TL 25386 1233MB TL
tpcc-5 1 256MB 00:00:03 5 380MB 00:00:06 335 453MB 00:00:40 19184 1384MB TL 26262 1598MB TL

wikipedia-1 1 256MB 00:00:02 27 256MB 00:00:04 5488 371MB 00:04:39 130848 370MB TL 45018 400MB TL
wikipedia-2 1 256MB 00:00:02 6 323MB 00:00:03 216 329MB 00:00:08 2984 394MB 00:12:57 31124 1164MB TL
wikipedia-3 1 256MB 00:00:02 20 351MB 00:00:06 1369 594MB 00:00:32 43146 566MB TL 33906 692MB TL
wikipedia-4 1 256MB 00:00:02 4 346MB 00:00:04 43 390MB 00:00:08 451 640MB 00:01:05 10059 1833MB TL
wikipedia-5 1 256MB 00:00:02 9 256MB 00:00:04 67 319MB 00:00:07 2438 582MB 00:01:26 40760 689MB TL
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F.3 Transaction Scalability

One transaction Two transactions Three transactions Four transactions Five transactions
Histories Mem. Time Histories Mem. Time Histories Mem. Time Histories Mem. Time Histories Mem. Time

tpcc-1 2 313MB 00:00:03 5 311MB 00:00:04 6 341MB 00:00:05 241 393MB 00:00:23 9491 829MB 00:08:34
tpcc-2 6 256MB 00:00:04 223 456MB 00:00:24 1296 562MB 00:02:03 4867 810MB 00:09:18 11085 1195MB TL
tpcc-3 2 256MB 00:00:03 26 324MB 00:00:07 502 501MB 00:00:40 10352 1482MB 00:07:52 20949 1304MB TL
tpcc-4 7 256MB 00:00:04 216 461MB 00:00:19 541 537MB 00:00:41 13012 695MB 00:15:58 20609 1157MB TL
tpcc-5 1 256MB 00:00:03 2 256MB 00:00:05 3 336MB 00:00:05 8 376MB 00:00:06 19 381MB 00:00:08

wikipedia-1 6 256MB 00:00:02 212 308MB 00:00:07 8430 312MB 00:16:45 117794 378MB TL 107924 444MB TL
wikipedia-2 4 256MB 00:00:03 8 308MB 00:00:04 36 256MB 00:00:06 851 460MB 00:00:47 8725 256MB 00:17:10
wikipedia-3 6 256MB 00:00:03 216 311MB 00:00:12 7244 536MB 00:05:34 25589 567MB TL 21133 645MB TL
wikipedia-4 1 256MB 00:00:02 9 320MB 00:00:04 315 623MB 00:00:43 1031 338MB 00:01:52 2534 839MB 00:05:01
wikipedia-5 2 256MB 00:00:03 6 256MB 00:00:05 12 256MB 00:16:45 57 376MB 00:00:08 228 533MB 00:00:23
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